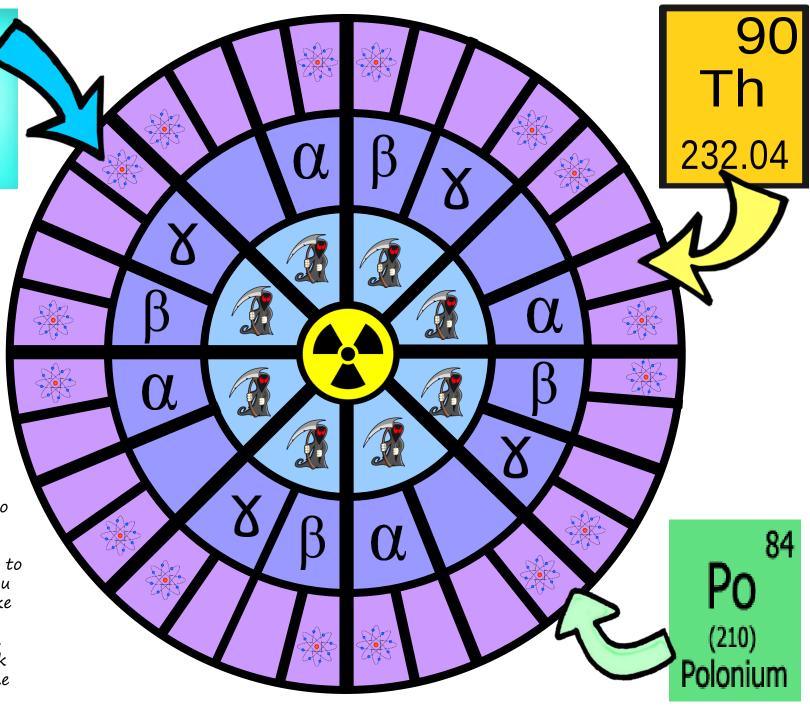

<u>Rules:</u> With each statement, vote true or false. If your vote is correct and you can justify your answer, move along the board. If your vote is incorrect, move towards the centre. Drop into the middle and you are out. To win, be the first to go full-circle. You decide if you take the long route around the edge or the fast-track routes nearer the middle.

92


238.029

Rules: With each statement, vote true or false. If your vote is correct and you can justify your answer, move along the board. If your vote is incorrect, move towards the centre. Drop into the middle and you are out. To win, be the first to go full-circle. You decide if you take the long route around the edge or the fast-track routes nearer the middle.

92

238.029

FALSE	TRUE	1 The mass number is the total number of protons and electrons.	2 Isotopes are atoms of the same element that have the same atomic number but different mass numbers.	3 ¹⁴ ₆ C is an isotope of ¹⁴ ₇ N.
4 Positive ions are formed when atoms gain electrons.	5 An atom of uranium 238 has 92 protons and 146 neutrons.	6 There are 2 chlorine isotopes in nature, chlorine-35 and chlorine-36. They exist in equal amounts.	7 Henri Becquerel invented radioactivity.	8 A radioactive substance can not be made 'un-radioactive'.
9 Atoms are radioactive when they have too many electrons.	10 There is radiation all around us. This is called background radiation.	11 When a radioactive atom decays, it can emit alpha, beta or delta radiation.	12 Alpha decay means that a radioactive atom emits 2 protons and 2 neutrons.	13 Alpha particles have a 2- charge.

		14 When a radium atom decays, it emits an alpha particle from its nucleus.	15 When an atom emits an alpha particle, the mass number decreases by 2 and the atomic number decreases by 4.	16 ¹⁴ ₆ C to ¹⁴ ₇ N represents beta decay.
17 A beta particle is a slow moving electron.	18 During beta decay a protons turns into an electron.	19 The symbol for a beta particle is β_{-1}	20 The symbol for an alpha particle is ² ₄ α.	21 Gamma radiation is a particle.
22 The difference between an alpha particle and a helium atom is that the helium atom also has 2 electrons.	23 An alpha particle has a mass of 4.	24 A beta particle has a mass of 1.	25 Gamma radiation can travel the furthest.	26 Alpha particles are harmless because they are stopped by dust in the air or paper.

		27 Beta radiation is stopped by a thin piece of metal such as aluminium.	28 Gamma radiation is high energy electromagnetic radiation.	29 ²³⁸ 92U to ²³⁴ 90Th represents gamma decay.
30 Alpha radiation is less ionising than beta radiation.	31 Gamma radiation is the most dangerous type of radiation.	32 A Russian called Alexander Litvinenko died in 2006 because he ingested a beta source.	33 An alpha particle can only travel a few cm because it has such a large mass.	34 People who were trapped in basements when the bomb was dropped on Hiroshima survived because they were protected from alpha radiation by the thick walls.
35 Alpha particles are attracted to positively charged metal plates.	36 Beta particles are attracted to positively charged metal plates.	37 Alpha particles are deflected less than beta particles.	38 If you want to destroy a tumor, you should place a gamma source close to the tumor.	39 During an X-ray, you are given a lead shield to protect your other organs from receiving any X- rays.

1	False- it's the number of protons and neutrons			
2	True	22	True	
3	number		True	
4			False- electrons have a mass close to 0	
5	True	25	True	
6	False- the average atomic mass is 35.5. If the isotopes existed in equal amounts, it would be 36.	26	False- when ingested they cause the most harm as they cannot escape	
7	False- he discovered it	27	True	
8	True- radioactive atoms decay naturally	28	True	
9	False- its because the nucleus is unstable	29	False- its alpha decay because the mass number decreases by 4 and the atomic number by 2	
10	True	30	False- alpha radiation is most ionising as it has the highest	
11	False- alpha, beta or gamma (not delta)		charge	
12	True	31	False- the mass number decreases by 4 and the atomic number by 2	
13	False- the charge is 2+	32	False- it was an alpha source. Beta would have escaped from	
14	True		the body and done less damage.	
15	False- the mass number decreases by 4 and the atomic number by 2	33	True	
16	True – the mass number remains the same and the atomic	34	False- they were protected from the gamma radiation	
	number increases by 1 during beta decay.		False- because they are positive, they are attracted to negative plates	
17	False- it is a fast moving electron	36	True	
18	False- a neutron turns into a proton and electron	37	True (because they are heavier than beta particles)	
19	True	38	False- gamma radiation would leave the body	
20	False- mass number 4 and atomic number 2	39	True	
21	False- it is electromagnetic radiation		1]	