PRACTICAL TASK GUIDANCE

Stage 1- Planning (4 marks)

1) Complete some re/search using the $\mathrm{in} / \mathrm{ter} /$ net or text/books. Write down the web/site URL for re/ferlence (http://www ..)
2) If you use a book, write down the book title, au/thor, pub/li/ca/tion year, pub/li/sher:
'Science Entry Level Certificate OCR', C Sherry; L Smiles; B Cowie; 2011; Collins
3) List all e/quip/ment \& chem/i/cals

What is the What harm could Idanger? danger? + \mid
5) Write a step by step method:

Set up the equipment as shown in the Diagram.
Use a ... to measure out ..
Transfer the chemical into a ... Next...

To keep the test fair I will keep the following things the same:
Repeat...
6) Draw a results table. Keep this format!
(Independent $=$ Investigate $;$ Dependent $=$ Data)

PRACTICAL TASK GUIDANCE

1) Draw a graph (work out averages first): Ensure you have - good scale for the axes

- labelled the axes
- added units
- plotted all points correctly
- drawn a LOBF

Stages 3 \& 4-Patterns and Interpreting (8 marks)

1) Describe the pattern, quote some numbers from the graph and explain the science behind the results:
"As the time increases, the tem/pe/ra/ture decreases. For example, when the time was Osec, the tem/pe/ralture was $90^{\circ} \mathrm{C}$. When the time was 90 sec , the tem/pelra/ture was $20^{\circ} \mathrm{C}$. Heat always moves from a hot object to the colder one until the two tem/pelraltures are equal."

Stage 5- Reviewing (4 marks) (how good are the results?)

1) Look at the graph. If you have a clear line of best fit, the results are good enough to come to a con/clu/sion (even if you have 1 or 2 a/no/ma/lies)
2) Think back to your ex/pe/ri/ment. How much did you spill? Where else might you have made mistakes? How easy was the method? How much have these points affected the quality of your results?
