

MARKS	MARKING POINTS	Í
1	DIAMOND HAS A GIANT STRUCTURE	EXPECTED
1	WHERE EACH CARBON ATOM FORMS 4	EXPECTED
1	STRONG	EXPECTED
1	COVALENT BONDS	EXPECTED
	ALLOW CARBON ATOMS IF NO OTHER MARKS HAVE BEEN AWARDED	DELAYED

DESCRIBE: RECALL FACTS, EVENTS OR PROCESSES. GIVE AN ORDERED ACCOUNT.

CONNECTIVES: FIRSTLY, NEXT, FINALLY,...

MARKS	MARKING POINTS	í
5-6	THERE IS A DETAILED DESCRIPTION OF A LAB PROCEDURE FOR OBTAINING KC1. AN INDICATOR HAS BEEN USED AND A METHOD OF OBTAINING CRYSTALS. ALMOST FAULTLESS SPAG.	LANDED
3-4	THERE IS A CLEAR DESCRIPTION OF A LAB PROCEDURE FOR OBTAINING KC1. AN INDICATOR HAS BEEN USED OR A METHOD OF OBTAINING CRYSTALS. SOME SPAG ERRORS.	EXPECTED
1-2	THERE IS A SIMPLE DESCRIPTION OF A LAB PROCEDURE FOR OBTAINING KC1. POOR SPAG.	DELAYED
0	NO RELEVANT COMMENTS MADE	CANCELLED
CH2P2012	ADD HC1 TO FLASK, ADD INDICATOR, ADD KOH, SWIRL, ADD DROPWISE NEAR ENDPOINT, STOP WHEN INDICATOR CHANGES COLOUR. NOTE VOLUME OF KOH USED. REPEATE WITHOUT INDICATOR, POUR SOLUTION INTO EVAPORATING BASIN. HEAT. LEAVE TO CRYSTALLISE.	LAST UPDATDED 20:48 PM

MARKS	MARKING POINTS	Í
5-6	THERE IS A CLEAR AND DETAILED DESCRIPTION OF THE ELECTROLYSIS OF MOLTEN ALUMINIUM OXIDE. SPAG IS ALMOST FAULTLESS.	LANDED
3-4	THERE IS SOME DESCRIPTION OF THE ELECTROLYSIS OF MOLTEN ALUMINIUM OXIDE. SOME SPAG ERRORS.	EXPECTED
1-2	THERE IS A BRIEF DESCRIPTION OF THE ELECTROLYSIS OF MOLTEN ALUMINIUM OXIDE. POOR SPAG.	DELAYED
0	NO RELEVANT COMMENTS MADE	CANCELLED
CH2PSMS	MELT ALUMINIUM OXIDE, POSITIVE ALUMINIUM IONS ATTRACTED TO CATHODE, ALUMINIUM IONS GAIN 3 ELECTRONS EACH, NEGATIVE OXIDE IONS ATTRACTED TO ANODE, OXIDE IONS LOSE 2 ELECTRONS EACH, OXYGEN ATOMS PAIR UP, OXYGEN GAS FORMED, OXYGEN REACTS WITH CARBON ANODES TO MAKE CARBON	LAST UPDATDED 21:05 PM

DIOXIDE.

MARKS	MARKING POINTS	Í
1	ATOMS IN PURE COPPER ARRANGED IN LAYERS	EXPECTED
1	THEREFOR LAYERS CAN SLIDE SO COPPER IS SOFT	EXPECTED
1	IN BRONZE, TIN ATOMS DISTORT LAYERS	EXPECTED
1	CONSEQUENTLY, ATOMS CANNOT SLIDE SO BRONZE IS HARDER	EXPECTED
	A CORRECTLY LABELLED DIAGRAM FOR COPPER AND BRONZE CAN SCORE 4 MARKS	LANDED

REFERENCE TO INCORRECT BONDING CANCELLED = 3 MARKS MAX

MARKS	MARKING POINTS	Í
5-6	THERE IS A CLEAR AND DETAILED DESCRIPTION OF THE POSITIVE AND NEGATIVE REASONS FOR USING BRINE. ALMOST FAULTLESS SPAG.	LANDED
3-4	THERE IS SOME DESCRIPTION OF THE POSITIVE AND NEGATIVE REASONS FOR USING BRINE. SOME SPAG ERRORS.	EXPECTED
1-2	THERE IS A BRIEF DESCRIPTION OF REASONS FOR USING BRINE. SPAG IS WEAK.	DELAYED
0	NO RELEVANT COMMENTS MADE	CANCELLED
COLLREVC2	POSITIVES: CAN BE CARRIED OUR AT ROOM TEMPERATURE, NaOH PRODUCED DIRECTLY. NEGATIVES: ELECTROLYSIS REQUIES ELECTRICITY. ELECTRICITY IS	LAST UPDATDED 22:32 PM

EXPENSIVE.

MARKING POINTS

 (\mathbf{i})

LANDED

ED

	DETAILED DESCRIPTION OF STRUCTURE AND
5-0	BONDING IN Cl_2 AND NaCl LINKED TO MPs.
	ALMOST FAULTLESS SPAG.

ENERGY TO BE OVERCOME, HIGH MP.

	CLEAR DESCRIPTION OF STRUCTURE OR BONDING	
3-4	IN $C1_2$ AND NaC1 LINKED TO MPs. SOME SPAG ERRORS.	EXPECT

1-2	SOME DESCRIPTION OF STRUCTURE OR BONDING	
± ∠	IN Cl_2 OR NaCl. SPAG IS WEAK.	DELAYED

0	NO RELEVANT COMMENTS MADE	CANCELLED
CH2H2014	Cl ₂ IS SIMPLE MOLECULAR, WEAK IMF BETWEEN MOLECULES REQUIRE LITTLE ENERGY TO BE OVERCOME, LITTLE HEAT REQUIRED SO MP IS LOW. NaCl GIANT IONIC LATTICE. STRONG ELECTROSTATIC ATTRACTION BETWEEN POSITIVE SODIUM TONS AND NECATIVE CHLORIDE TONS REQUIRES LARGE AMOUNTS OF	LAST UPDATDED 00:17 AM

FLIGHT C2	ADDITIONAL SCIENCE	FLIGHT C2
TOPIC ELECTROLYSIS	OXIDATION, REDUCTION, ELECTRONS, ANODE, CATHODE, CATION, ANION, GAIN, LOSE, ELECTROLYTE, IONS, ELECTRODE, EXTERNAL CIRCUIT.	OIL RIG OXIDATION IS LOSS REDUCTION IS GAIN OF ELECTRONS CATION = POSITIVE CATHODE = NEGATIVE
GRADE		ANION = NEGATIVE ANODE = POSITIVE
CHEMISTRY AIRLIN	CHEMISTRY AIRLINES	
FLIGHT C2	ADDITIONAL SCIENCE	FLIGHT C2
TOPIC ACIDS AND	PROTON DONOR, PROTON ACCEPTOR, CRYSTALS, SALT, EVAPORATE, MENISCUS, BURETTE, PIPETTE, INDICATOR, DROPWISE, ENDPOINT, SOLUBLE,	ACID = PROTON (H ⁺) DONOR BASE = PROTON ACCEPTOR
A/A*	INSOLUBLE, ALKALI, CORROSIVE, HYDROXIDE ION, NEUTRALISATION,	ALKALI = SOLUBLE BASE ALKALIS RELEASE
GRADE	PRECIPITATE.	HYDROXIDE (OH ⁻) IONS IN SOLUTION