## C1 Atmosphere and Earth Chemistry Knowledge Organiser

| Which gases were<br>released into the<br>atmosphere by<br>volcanoes? | Carbon dioxide, ammonia, methane and steam                                                                                                                                                                                                                                                                          | Give a use for argon, oxygen, nitrogen.                                                    | Nitrogen: store sperm and food; oxygen in hospitals for breathing; argon in light bulbs.                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How did the oceans form?                                             | Steam condensed when the Earth's atmosphere cooled.                                                                                                                                                                                                                                                                 | What is the composition of today's atmosphere?                                             | 79% nitrogen, 21% oxygen, 0.03% carbon dioxide,<br>1% argon                                                                                                                                                                                                                                                                                                                                                                                                    |
| Where did oxygen come from?                                          | Plants absorbed carbon dioxide during photosynthesis and released oxygen.                                                                                                                                                                                                                                           | What is the structure of the Earth?                                                        | Inner core = solid iron and nickel; outer core = molten iron and nickel, mantle: hot, molten rock; thin crust made of rock.                                                                                                                                                                                                                                                                                                                                    |
| Where did nitrogen come from?                                        | Oxygen reacted with ammonia to produce water and nitrogen.                                                                                                                                                                                                                                                          | What causes earthquakes?                                                                   | Radioactive processes inside the core release<br>energy that drive convection currents inside the<br>mantle which causes the plates of the crust to<br>move suddenly.                                                                                                                                                                                                                                                                                          |
| What happened to carbon dioxide that was in the atmosphere?          | It dissolved in the oceans. It reacted with other chemicals to make limestone rocks and sea shells.                                                                                                                                                                                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Why does no-one know<br>how life on the Earth<br>began?              | There was no life at the beginning.<br>(diagram: Pangaea = supercontinent)                                                                                                                                                                                                                                          | How do islands form?                                                                       | Plates move apart and lava rises to fill the gap.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Give two theories that<br>describe how life on<br>Earth began.       | Murchison meteor brought life to Earth.<br>Life started near volcanic vents on the seabed.                                                                                                                                                                                                                          | Why are not all earthquakes reported?                                                      | To avoid mass panic; not all cause enough damage to be significant                                                                                                                                                                                                                                                                                                                                                                                             |
| Describe the Miller Urey experiment.                                 | They mixed water, ammonia, methane and<br>hydrogen and produced a high voltage spark to<br>simulate lightening. Left the mixture for several<br>weeks. The resulting mixture contained 11 amino                                                                                                                     | Why are scientists unable to predict<br>earthquakes and why don't they<br>always evacuate? | Evacuations are expensive. Scientists cannot see<br>what goes on below the crust. They cannot measure<br>the forces that build up and know when these forces<br>have reached their limit.                                                                                                                                                                                                                                                                      |
| Describe fractional distillation of air.                             | Air is compressed and cooled to -200°C. Carbon<br>dioxiode and water are removed as they would<br>otherwise block the pipes. At -200°C nitrogen,<br>argon and oxygen are liquid. The air is slowly<br>warmed back up. Nitrogen boils off first and is<br>collected. Next it is argon, and oxygen is left<br>behind. | Describe the work of Alfred Wegener                                                        | He suggested that all continents were once joined in a super continent (Pangaea) and moved apart a few cm every year for millions of years. His evidence: continents fit together like jig-saw pieces, similar rocks and fossils are found on continents that are far apart. His ideas were only accepted when ocean floors were mapped in the 20 <sup>th</sup> century. Other scientists thought continents had been linked by land bridge that were flooded. |

| C1 Ethanol, Fundamental ideas              |                                                                                                                                                                                                 |                                             |                                                                                                                                                                                                                                               |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mass number                                | Number of protons + neutrons                                                                                                                                                                    | Ethanol formula                             | C₂H₅OH                                                                                                                                                                                                                                        |  |
| Why are chemical equations balanced?       | Because of the law of conservation of mass.<br>Atoms cannot be created or destroyed which<br>means you need to have the same number of<br>each type of atom on both sides of the equation.      | Describe fermentation to produce<br>ethanol | Dissolve sugar in warm water. Add yeast. Seal the container with cotton wool to ensure no oxygen enters but the carbon dioxide can escape. The enzyme in yeast converts the sugar to carbon dioxide and ethanol during anaerobic respiration. |  |
| Atomic number                              | Number of protons                                                                                                                                                                               | Equation for fermentation                   | $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$                                                                                                                                                                                                  |  |
| Compound                                   | Two or more different types of atoms chemically bonded.                                                                                                                                         | Uses of ethanol from fermentation           | Alcoholic beverages (the ethanol produced is impure which adds taste to the alcohol); bioethanol fuel                                                                                                                                         |  |
| Element                                    | Substance made from one type of atom only.                                                                                                                                                      | Describe hydration to produce ethanol       | First, crack long alkanes to produce ethene. Then mix ethene with steam and pass over a hot phosphoric acid catalyst.                                                                                                                         |  |
| Mass of protons,<br>electrons, neutrons    | Protons = 1; Neutrons = 1; Electrons = 0                                                                                                                                                        | Equation for hydration                      | $C_2H_4 + H_2O \rightarrow C_2H_5OH$                                                                                                                                                                                                          |  |
| Describe an atom                           | Positive nucleus that contains protons and neutrons surrounded by electrons that are found on shells.                                                                                           | Uses of ethanol from hydration              | Ethanol produced via hydration is pure. For this reason it is used as a solvent for varnishes and perfumes; used as a fuel.                                                                                                                   |  |
| Electron configuration                     | Shows where the electrons are found. 2 electrons fit onto the first shell, 8 electrons fit onto the other shells. E.g. K = $2,8,8,1$ and O = $2,6$                                              | Advantages of fermentation                  | Simple process; cheap process; bioethanol is a carbon neutral fuel; bioethanol is a renewable fuel as the raw material is plants. This means crude oil is preserved. Harvest time creates jobs.                                               |  |
| Describe the purpose of the Periodic Table | Arrangement of atoms in order of atomic number.<br>Atoms in the same group have the same number<br>of electrons in the outer shell. Atoms in the same<br>period have the same number of shells. | Disadvantages of fermentation               | Batch process; slow process; yeast is destroyed<br>and has to be replaced; land is used to grow crops<br>for bioethanol instead of crops being a food source;<br>habitats are destroyed to create farm land.                                  |  |
| Why are all atoms neutral?                 | Because the number of protons = the number of electrons in an atom.                                                                                                                             | Advantages of hydration                     | Fast; continuous (24/7) process; no waste product formed; ethanol is 100% pure and can be used in industry.                                                                                                                                   |  |
| How are compounds formed?                  | Atoms either lose/gain electrons to make ions ore atoms share electrons to make covalent bonds.                                                                                                 | Disadvantages of hydration                  | Needs crude oil to create ethene; crude oil is non-<br>renewable so reserves are depleted; crude oil can<br>be spilled during transport and harm wild life;<br>cracking requires large amounts of energy                                      |  |

|                                                                | UT Fa                                                                                                                                                                                                                |                                                                    |                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Why are fats added to food?                                    | Fats are energy stores.                                                                                                                                                                                              | Define immiscible                                                  | Not mixable                                                                                                                                                                                                                                               |
| Why do we cook with food?                                      | Cooking with fat is faster than with water; it adds texture, flavour and colour to the food; it adds vitamins to the food.                                                                                           | What is an emulsion?                                               | A mixture of two immiscible substances. (E.g. when<br>oil and water are mixed and shaken, an emulsion<br>forms.<br>oil Oil and water<br>shaken/mixed<br>= emulsion                                                                                        |
| What is a saturated fat?                                       | A fat that contains only carbon-carbon single bonds                                                                                                                                                                  | Properties of an emulsion                                          | Emulsions are opaque and thicker.                                                                                                                                                                                                                         |
| What is an unsaturated fat?                                    | A fat that contains carbon-carbon single bonds as well as carbon=carbon double bonds                                                                                                                                 | Describe an emulsifier                                             | A chemical that is added to an emulsion to prevent the two immiscible liquids from separating.                                                                                                                                                            |
| Which fats are healthier, saturated or unsaturated?            | unsaturated                                                                                                                                                                                                          | Explain how an emulsifier works                                    | The hydrophilic head bonds to the water and the hydrophobic tail bonds to the oil droplet.                                                                                                                                                                |
| Disadvantages of cooking with oil?                             | Food absorbs fat which increases the energy content of the food.                                                                                                                                                     | Emailine<br>suitable for<br>listravious                            | $ \begin{array}{c} H & H \\ I & I \\ -C = C - + H_2 \rightarrow -C - C - C - C - C - C - C - C - C - $                                                                                                                                                    |
| How are oils extracted from seeds?                             | Crush the seeds; press the seeds to extract the oil; Add a solvent to absorb impurities; evaporate the solvent so the pure oil is left behind.                                                                       | Talar: Water in cut and the Error Stores                           |                                                                                                                                                                                                                                                           |
| How are oils extracted from plant material, such as flowers?   | Steam distillation: steam is passed through<br>flowers. Steam and oil vapour rise up and are<br>cooled and condensed. The oil now floats on top<br>of the water. The water is run off and the oil is left<br>behind. | Defense syndricities<br>interviewers<br>subergegeneraties<br>total | How an emulsifier works                                                                                                                                                                                                                                   |
| How do you turn an<br>unsaturated fat into a<br>saturated fat? | Hydrogenation (adding hydrogen)                                                                                                                                                                                      | 1. A.                       | how<br>essential oils<br>are made                                                                                                                                                                                                                         |
| What are saturated fats used for?                              | Spreads; baking & cooking                                                                                                                                                                                            | GOOD BAD<br>Unsaturated Fats VS Saturated Fats                     | the steam passes through the piant matter, pulling the piant matter, pulling the piant matter, pulling the oil                                                                                                                                            |
| Describe hydrogenation                                         | The oil is heated to 60°C and mixed with a nickel catalyst. Hydrogen is bubbled through the mixture. The hydrogen is added to the double bond. A saturated hydrocarbon/fat is formed.                                |                                                                    | the condenser<br>the staar<br>the staar<br>the staar<br>the staar<br>the staar<br>the staar<br>the staar<br>the latover foral water<br>an aloo be used in beauty<br>and home groducts<br>waters in nature of the latover foral water<br>and home groducts |

| C1 Limestone                                                            |                                                                                                                                                                                                           |                                                                      |                                                                                                                                                     |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Limestone uses                                                          | Bricks, statues, cement, mortar, concrete, bread, toothpaste                                                                                                                                              | How calcium oxide is produced in the limestone cycle                 | Thermal decomposition of the limestone                                                                                                              |
| Reasons for mining<br>limestone                                         | Creates jobs, workers spend money in local area<br>= boost to local economy, better transport links<br>are created to access mine                                                                         | Calcium hydroxide paste common name                                  | Slaked lime                                                                                                                                         |
| Reasons against mining<br>limestone                                     | Loss of habitat, noise pollution from blasting, dust pollution, air pollution from increased traffic                                                                                                      | Calcium hydroxide solution common name                               | Limewater                                                                                                                                           |
| Chemical name of limestone                                              | Calcium carbonate                                                                                                                                                                                         | Calcium hydroxide formula                                            | Ca(OH) <sub>2</sub>                                                                                                                                 |
| Chemical formula of limestone                                           | CaCO <sub>3</sub>                                                                                                                                                                                         | How calcium hydroxide paste is<br>produced in the limestone cycle    | A small amount of water is added to quicklime $(CaO + H_2O \rightarrow Ca(OH)_2)$                                                                   |
| Thermal decomposition definition                                        | Breaking down a chemical using heat                                                                                                                                                                       | How calcium hydroxide solution is<br>produced in the limestone cycle | A lot of water is added to quicklime or slaked lime                                                                                                 |
| Thermal decomposition of limestone                                      | $CaCO_3 \rightarrow CaO + CO_2$                                                                                                                                                                           | How calcium carbonate is produced in the limestone cycle             | Carbon dioxide is bubbled through limewater.                                                                                                        |
| Thermal decomposition of copper carbonate                               | $CuCO_3 \rightarrow CuO + CO_2$ (colour change from green solid to black solid)                                                                                                                           | Slaked lime uses                                                     | Plaster                                                                                                                                             |
| How to investigate the<br>thermal decomposition of<br>a metal carbonate | Heat metal carbonate in a test tube. Start the stop<br>clock when you start<br>heating.<br>Stop timing when<br>the limewater turns<br>cloudy. NOTE: a few<br>bubbles formed at the<br>start are just air. | Why lime mortar (calcium hydroxide paste) hardens over time          | The calcium hydroxide reacts with the carbon<br>dioxide in the air to form solid calcium carbonate.<br>Any water evaporates into the air over time. |
| Calcium oxide formula                                                   | СаО                                                                                                                                                                                                       | What is chemical weathering?                                         | Metal carbonates reacting with acid                                                                                                                 |
| Calcium oxide common name                                               | Quicklime                                                                                                                                                                                                 | How to make cement                                                   | Heat powdered limestone with powdered clay                                                                                                          |
| How to make concrete                                                    | Mix cement, sand, water, aggregate                                                                                                                                                                        | How to make mortar                                                   | Mix sand, cement, water                                                                                                                             |
| Advantages of concrete                                                  | Can be poured into different shapes, can be reinforced to make it stronger, can be painted                                                                                                                | Disadvantages of concrete                                            | Ugly                                                                                                                                                |

|                                        | C                                                                                                                                                                                                                                                                                                                     | 1 Metals I                                          |                                                                                                                                                                                                                             |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Native                                 | Unreactive metals that are found by themselves in the ground. E.g. gold, silver, copper.                                                                                                                                                                                                                              | Low carbon steel properties and uses                | This steel is softer and more easily shaped. It is used to make car bodies, machinery or ships.                                                                                                                             |
| Ore                                    | Mineral or rock with enough metal or metal compound to make it economically worthwhile extracting                                                                                                                                                                                                                     | Why metals need to be recycled                      | Metals are non-renewable resources and unless we recycle metal objects, we will run out of metals. Recycling also saves 95% energy.                                                                                         |
| Alloy definition                       | Mixture of metal with another metal or non-metal                                                                                                                                                                                                                                                                      | Which metals are extracted by electrolysis          | Metals that are above carbon in the reactivity series.                                                                                                                                                                      |
| Why pure metals are soft               | Atoms are arranged in neat layers which can slide                                                                                                                                                                                                                                                                     | Definition of electrolysis                          | Using electricity to break down a metal compound.                                                                                                                                                                           |
| Why alloys are harder than pure metals | Layers are distorted as atoms are of different size.<br>The layers do not slide                                                                                                                                                                                                                                       | Which metals are extracted by reduction             | Metals that are below carbon in the reactivity series (apart from the native metals)                                                                                                                                        |
| Reduction                              | Using carbon to remove oxygen from a metal oxide                                                                                                                                                                                                                                                                      | Why titanium and aluminium are expensive            | They require electrolysis to be extracted.<br>Electrolysis requires large amount of energy. The<br>process is also long and expensive raw materials<br>such as argon and magnesium are needed in the<br>extraction process. |
| Blast Furnace procedure                | Coke, iron ore and limestone enter the blast furnace from the top. Hot air is blown into the furnace. Coke                                                                                                                                                                                                            | Advantages of titanium and aluminium alloys         | Both alloys are corrosion resistant, very strong and have a low density.                                                                                                                                                    |
|                                        | reacts with oxygen from the air to form carbon<br>dioxide. Carbon dioxide reacts with more coke to<br>make carbon monoxide. Carbon monoxide reacts<br>with the iron oxide ore to form molten iron and<br>carbon dioxide. Limestone reacts with impurities to<br>form slag. The slag floats on top of the molten iron. | Titanium alloy uses                                 | Titanium is used for hip replacements, racing bikes and space vehicles.                                                                                                                                                     |
| Stainless Steel                        | Alloy of iron, nickel and chromium. Corrosion resistant and used to make cutlery and sinks.                                                                                                                                                                                                                           | Iron ore, coke<br>and lime stone<br>Hot waste gases |                                                                                                                                                                                                                             |
| How steel is made                      | Iron from the blast furnace (called pig iron) is too<br>brittle as it contains too much left over carbon from<br>the coke. Oxygen is bubbled through the pig iron.<br>Oxygen reacts with some of the carbon to make<br>carbon dioxide. The carbon content is reduced to<br>below 4%.                                  | Hot air blast Hot air blast                         | alloy Pure metal                                                                                                                                                                                                            |
| High carbon steel properties and uses  | Because it is hard and strong but still quite brittle, it is used to make tools.                                                                                                                                                                                                                                      | Blast Furnace                                       | molten aluminium<br>collects at the bottom                                                                                                                                                                                  |

| High grade ore                                                | Copper rich ore                                                                                                                                                                                                                                                                                                                                                                                                       | How copper is purified via electrolysis                        | A copper anode and copper cathode are placed                                                            |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Low grade ore                                                 | Ore low in copper                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                | into the leachate or copper sulfate solution. The<br>copper sulfate solutions contains copper ions. The |  |
| Smelting                                                      | Ore is heated in a furnace                                                                                                                                                                                                                                                                                                                                                                                            | positive copper ions move to the negative                      | positive copper ions move to the negative cathode                                                       |  |
| Copper properties                                             | Good conductor of heat and electricity; shiny, ductile, malleable, golden in colour; unreactive                                                                                                                                                                                                                                                                                                                       |                                                                | copper atoms. Copper atoms from the anode<br>dissolve into solution. The process finishes, when         |  |
| Copper uses                                                   | Pipes, wires, cooking pots                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | the anode has fully dissolved into solution.                                                            |  |
| Brass                                                         | Copper and zinc alloy (used to make instruments)                                                                                                                                                                                                                                                                                                                                                                      | Copper recovery process                                        | Pure Impure                                                                                             |  |
| Bronze                                                        | Copper and tin alloy (used to make statues)                                                                                                                                                                                                                                                                                                                                                                           | using bio-mining tech                                          | nology Copper Copper                                                                                    |  |
| Why we need to extract copper via phytomining and bioleaching | Mines are running out of high grade copper ores.<br>Low grade ores need new extraction methods.<br>Mines are environmentally unfriendly and the new<br>extraction methods avoid the loss of habitats.                                                                                                                                                                                                                 | Dumped low-grade<br>sulfide copper ore<br>Heap<br>bio_laschlog | fbacteria                                                                                               |  |
| Phytomining process                                           | Plants are planted on soil that contains copper<br>compounds. The copper compounds are<br>absorbed through the roots. The plants are<br>burned and the ash that is left behind contains the<br>desired copper compounds. The ash is dissolved<br>in acid to form a copper solution (e.g. ash +<br>sulfuric acid = copper sulfate solution).<br>Electrolysis is used to extract the copper from the<br>copper sulfate. | Leaching solution                                              | Copper(II) Sulphate(aq)                                                                                 |  |
| Bioleaching process                                           | Bacteria are sprayed over low grade copper ore.<br>The bacteria produce a waste product called<br>leachate. The leachate solution contains<br>dissolved copper ions. Electrolysis is used to<br>extract the copper from the leachate.                                                                                                                                                                                 |                                                                | Leave for one week while<br>reaction takes place<br>blue copper green iron<br>sulphate<br>solution      |  |
| How scrap iron is used in the copper extraction               | Iron is more reactive than copper. Scrap iron is<br>added to the leachate or copper sulfate solution<br>from bioleaching and phytomining. The iron<br>replaces the copper to form pure copper and an<br>iron solution. Scrap iron is cheap and easily<br>available from scrap yards.                                                                                                                                  |                                                                | Before Copper metal<br>on iron<br>After                                                                 |  |

|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DII, Cracking, Polymers I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is crude oil?                              | A mixture of different hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | What is produced when fuels combust incompletely?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carbon monoxide                                                                                                                                                                                                                                                                                                                                       |
| What is a hydrocarbon?                          | A compound made of hydrogen and carbon ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Problems caused by carbon dioxide and carbon monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carbon dioxide: global warming<br>Carbon monoxide: toxic                                                                                                                                                                                                                                                                                              |
| Alkane definition                               | Saturated hydrocarbons with the general formula $C_nH_{2n+2}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Other pollutant gases produced by<br>burning fuels & the impact of the<br>gases on health and the environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulfur dioxide: acid rain; $SO_2$ is removed from<br>chimney gases by reacting it with CaO/Ca(OH) <sub>2</sub><br>Nitrogen oxides: asthma, acid rain; nitrogen oxides<br>are formed when nitrogen and oxygen from the air<br>react in the engine due to the spark produced in the<br>engine to ignite the fuel<br>Particulates (soot): global dimming |
| Saturated                                       | Hydrocarbon with only C-C single bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Define cracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Breaking large alkanes into small alkanes and alkenes                                                                                                                                                                                                                                                                                                 |
| What makes a good fuel                          | Ignites easily, burns slowly, releases large<br>amounts of energy, not toxic, easy to store, little<br>waste product left behind                                                                                                                                                                                                                                                                                                                                                                                                                                    | Define polymerisation, monomer and polymer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monomer: alkene used to make a polymer<br>Polymer: many monomers joined together<br>Polymerisation: many monomers link together by<br>opening up their double bond to form carbon-<br>carbon single bonds to link the monomers                                                                                                                        |
| Trends in properties of alkanes                 | Short alkanes have low melting and boiling points as there are only weak intermolecular forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Define fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The collection of hydrocarbons with similar boiling points is called a fraction.                                                                                                                                                                                                                                                                      |
|                                                 | overcome. The longer the alkane, the darker the colour, the more viscous and the less volatile the substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Define fractional distillation of crude oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Separation of a mixture of hydrocarbons based on the difference in their boiling points.                                                                                                                                                                                                                                                              |
| Describe the process of fractional distillation | Crude oil is heated and vaporised. The vapour<br>enters the fractional distillation column at the<br>bottom. The column is hotter at the bottom and<br>gets colder towards the top. The crude oil vapours<br>rise. When the hydrocarbon vapours reach their<br>boiling point (which is also their condensing<br>point), they condense. Small hydrocarbons have<br>a low boiling point and condense near the top<br>(some vapours never condense, these vapours<br>come out at the top). Some hydrocarbons never<br>vaporise; they stay at the bottom of the column. | Smith Molecular<br>Leve bioling point<br>Leve biol | H H H H H H H H H<br>H C H H H H H H H H<br>H H H H H H H H H H H<br>Methane Ethane Propane<br>Long Hydrocarbon<br>H H H H H H H H H H<br>H H H H H H H H H                                                                                                                                                                                           |

|                                                       | C1 Crude C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dil, Cracking, Polymers II                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alkene definition                                     | Unsaturated hydrocarbon with formula $C_nH_{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reasons for cracking                                             | Large alkanes are in high supply but low demand;<br>small alkanes are in low supply but high demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unsaturated                                           | Hydrocarbon that also contains C=C double bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Catalytic cracking                                               | Large hydrocarbons are heated and vaporised and passed over a hot catalyst (e.g. broken porcelain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name and formula of first<br>5 alkanes                | Methane $CH_4$ , Ethane $C_2H_6$ , Propane, $C_3H_8$ ,<br>Butane $C_4H_{10}$ , Pentane $C_5H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Steam cracking                                                   | Large hydrocarbons are mixed with steam and heated to very high temperatures to crack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Name and formula of first<br>4 alkenes                | Ethene C <sub>2</sub> H <sub>4</sub> , Propene C <sub>3</sub> H <sub>6</sub> , Butene C <sub>4</sub> H <sub>8</sub> ,<br>Pentene C <sub>5</sub> H <sub>10</sub> $\stackrel{H}{\underset{H}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{1}{\leftarrow}} c = c \begin{pmatrix} cH_3 \\ H \end{pmatrix} \stackrel{H}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}}{\underset{H}{\overset{H}{\overset$ | How to distinguish between alkanes and alkenes                   | Add orange bromine water and shake. If the bromine water decolourises, an alkene was present. No colour change indicates that an alkane was present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| What is produced when<br>fuels combust<br>completely? | Carbon dioxide and water<br>e.g. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | How to draw a polymer from a monomer and how to name the polymer | $\begin{bmatrix} H & H \\ r \\ e = C \\ H & H \\ H & eatilytet \\ results result$ |
| Problems caused by non-<br>biodegradable polymers     | They use up landfill space which we are running<br>out of. They can blow easily into habitats where<br>they might suffocate or poison animals.Image: the state of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | What are smart polymers?                                         | Polymers that change their properties due to a<br>change in the environment. E.g. hydrogels swell<br>when in contact with water. They are used in<br>nappies and wound dressings. Shape memory<br>alloys change shape when exposed to heat. They<br>are used to stitch wounds. As they warm up, they<br>tighten and close the wound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Define biodegradable<br>plastics                      | Plastics that can be broken down by micro-<br>organisms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Disadvantages and advantages of biodegradable polymers           | As these plastics can be broken down by micro-<br>organisms, they do not use up landfill space or kill<br>wildlife. Crops are needed to make these polymers-<br>this causes food shortages and a rise in food<br>prices. Habitats are destroyed to create more farm<br>land.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Recycling advantages<br>and disadvantages             | Adv: saves energy, less carbon dioxide is<br>released, crude oil reserves preserved<br>Disadv: plastics need to be transported from<br>recycling station to recycling factory where they<br>need to be sorted and cleaned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | How to dispose of plastics                                       | Landfill<br>Recycling<br>Burning to create energy to heat homes (burning<br>can however produce toxic by-products such as<br>HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Homologous series                                     | Compounds with the same general formula that differ by a $CH_2$ group from one molecule to the next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Polymers and their uses                                          | Teflon- non stick so used to coat frying pans<br>Polypropene – hard,stiff so used to make crates<br>Polyethene – can be shaped: shopping bags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| C2 New materials, Metals, Alloys Knowledge Organiser |                                                                                                                                                                                                                                                      |                                          |                                                                                                                                                                     |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nanoparticle                                         | Particle the size of 1-100nm                                                                                                                                                                                                                         | Why metals conduct heat                  | The delocalised electrons can travel through the metal structure and pass on energy.                                                                                |
| Nanoparticle vs atom                                 | Atoms are smaller than nanoparticles.                                                                                                                                                                                                                | Why metals conduct electricity           | The delocalised electrons can travel through the metal structure and carry charge through the metal.                                                                |
| Nanoparticle vs bulk<br>material                     | Nano particles are much smaller than bulk<br>materials. E.g. gold nanoparticles are smaller<br>than gold items such as gold bars.                                                                                                                    | Polymer                                  | Long chain of atoms made when many monomers join. The double bond in the monomers opens to allow the monomers to link to make a polymer.                            |
| Nanoparticles properties                             | They have a larger surface area than bulk materials                                                                                                                                                                                                  | Thermoplastic polymers                   | Plastics that are made of long polymer chains that have weak intermolecular forces between the chains.                                                              |
| Nanoparticle uses                                    | Catalysts (only a little material is needed as the<br>surface area is so large)/ Added to sun creams as<br>the nanoparticles can get deeper into the skin and<br>don't leave a white film/ good lubricants as they<br>can get better into small gaps | Thermoplastic polymer properties         | Low melting points as little energy is needed to<br>break the weak intermolecular forces between the<br>chains. This allows the chains to slide over each<br>other. |
| Nanoparticle dangers                                 | Are so small they might enter the blood stream<br>and cause damage inside the body.<br>Might be inhaled and cause lung damage.                                                                                                                       | Thermosetting polymers                   | Plastics that are made of long polymer chains that have cross links (covalent bonds) between the chains.                                                            |
| Alloy                                                | Mixture of a metal and other metals or non metals                                                                                                                                                                                                    | Thermosetting polymers properties        | High melting points & strong as the cross links are strong. A lot of energy is needed to break cross links.                                                         |
| Alloys properties                                    | The atoms in alloys are different sizes. This distorts the layers. The layers can no longer slide past each other hence alloys are stronger than pure metals.                                                                                        | Wetal structure<br>Delocalised electrons | by structure                                                                                                                                                        |
| Smart alloys                                         | These are alloys that can be bent into different<br>shapes. When heated they return to their original<br>shape by themselves. Useful in dentistry                                                                                                    |                                          | ions                                                                                                                                                                |
| Metallic bond                                        | Electrostatic attraction between positive metal ions and sea of delocalised electrons.                                                                                                                                                               | ¥                                        |                                                                                                                                                                     |
| Why metals are malleable & ductile                   | The atoms are arranged in layers that can slide past each other.                                                                                                                                                                                     | Thermosofte                              | ning Thermosetting                                                                                                                                                  |

|                                            | C2                                                                                                                                                                                                                                        | Rate of Reaction                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Collision theory                           | For a reaction to take place, particles must collide<br>with the correct orientation and with enough<br>energy to start the reaction                                                                                                      | Observations for the acid and magnesium experiment                                           | Fizzing (hydrogen gas is produced); the magnesium piece disappears                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Activation energy                          | The minimum amount of energy needed to start the reaction                                                                                                                                                                                 | How to measure the rate of reaction<br>for the acid-magnesium experiment<br>using a balance  | Place a conical flask with acid onto a balance.<br>Place the magnesium next to the flask. Record the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rate                                       | Change in concentration or volume / change in time                                                                                                                                                                                        |                                                                                              | cotton plug to avoid splashing. Time how long it takes to lose a fixed mass of gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Concentration change and rate              | The higher the concentration, the faster the rate because there will be more particles present and therefore more frequent successful collisions.                                                                                         |                                                                                              | Diane<br>hydrocharies<br>and<br>Constrained<br>Diane<br>and<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Constrained<br>Diane<br>Con |
| Temperature change and rate                | The higher the temperature, the faster the rate.<br>The particles will have more energy and move<br>faster. More particles will have the required<br>activation energy. As a result there will be more<br>frequent successful collisions. | Describe the black cross experiment                                                          | In a conical flask mix hydrochloric acid and sodium<br>thiosulfate. Place the flask on a black cross and<br>time how long it takes until you can no longer see<br>the black cross. Repeat, but either change the<br>concentration or temperature of sodium thiosulfate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Surface area change and rate               | Going from large lumps to small powder<br>increases the surface area. More particles are<br>exposed and as a result there will be more<br>frequent successful collisions. This increases the<br>rate.                                     |                                                                                              | start clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| What is a catalyst                         | A substance that speeds up the rate of reaction without being used up itself                                                                                                                                                              | Observations for the black cross experiment                                                  | A yellow precipitate of solid sulfur is formed (the solution goes cloudy as a result).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| How does a catalyst work                   | It provides an alternative reaction pathway. This<br>new pathway has a lower activation energy. As a<br>result more particles now have the activation<br>energy and there will be more frequent successful<br>collisions.                 | total<br>amount<br>of                                                                        | Double the amount of<br>limiting reactant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| How to measure rate when a gas is produced | Use a conical flask connected to a gas syringe.<br>Time how long it takes to collect a fixed volume of gas.                                                                                                                               | product<br>low er tempera<br>low er concentr<br>larger pieces<br>time from start of reaction | ture<br>ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                         | CZ Ellergy char                                                                                              |                                                                                                                                                    |                                                                                                                                                                                         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endothermic definition                  | Energy is transferred from the surroundings to the reacting chemicals                                        | Colour of hydrated copper sulfate                                                                                                                  | Blue                                                                                                                                                                                    |
| Exothermic definition                   | Energy is transferred from the reacting chemicals to the surroundings                                        | Colour of anhydrous copper sulfate                                                                                                                 | White                                                                                                                                                                                   |
| How to recognise an                     | The temperature/thermometer reading goes                                                                     |                                                                                                                                                    |                                                                                                                                                                                         |
|                                         | endothermic reactions that differ: some reactions<br>need to be heated constantly (thermal<br>decomposition) | How to change hydrated copper sulfate into<br>anhydrous copper sulfate                                                                             | Heat the blue copper sulfate in a test tube<br>until it is white. You will see steam as the<br>water is driven off the blue copper sulfate.<br>This reaction is an endothermic process. |
| How to recognise an exothermic reaction | The temperature/thermometer reading goes up, the reaction vessel feels hot; sometimes light is               |                                                                                                                                                    |                                                                                                                                                                                         |
|                                         | produced                                                                                                     | How to change anhydrous copper sulfate                                                                                                             | Add water to the white copper sulfate. You                                                                                                                                              |
| Exothermic reaction examples            | Combustion, neutralisation, respiration                                                                      | observations                                                                                                                                       | will hear a hiss as the reaction is exothermic<br>and the heat released evaporates some of<br>the water you add.                                                                        |
| Endothermic reaction examples           | Thermal decomposition, photosynthesis, dissolving sherbet                                                    |                                                                                                                                                    |                                                                                                                                                                                         |
| Endothermic energy<br>profile diagram   | Energy Products Endbalay change Reactants Endbalay change                                                    | hydrated copper sulfate<br>CuSO <sub>4</sub> .5H <sub>2</sub> O<br>exothermic<br>blue crystals                                                     | anhydrous copper sulfate + water<br>CuSO <sub>4</sub> + 5H <sub>2</sub> O                                                                                                               |
|                                         | Reaction progress                                                                                            | \$\$\$                                                                                                                                             | 333                                                                                                                                                                                     |
| Exothermic energy profile diagram       | Energy                                                                                                       | In an exothermic reaction,<br>energy is released into the<br>surroundings as heat. As a<br>result, the temperature of<br>the surrounding increaser | In an endothermic reaction,<br>energy is absorbed from the<br>surroundings. As a result,<br>the temperature of the                                                                      |
|                                         | Reaction progress                                                                                            | the surroundings increases.                                                                                                                        | surroundings drops.                                                                                                                                                                     |

|                                          | C2 An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alysing Substances                  |                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages of instrumental methods       | Faster than experimental methods; you only need a small sample; results are more accurate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Describe gas chromatography         | A mixture of volatile compounds is injected and<br>vaporised. An inert (unreactive) carrier gas carries<br>the vapours through a column inside an oven.<br>Inside the column the mixture separates. As each<br>component of the mixture leaves the column, it is<br>detected by a machine. The machine prints out a<br>chromatogram. |
| Disadvantages of<br>instrumental methods | Instrumental methods require specialist training (expensive) and you need a known data base to compare results to.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                                                                                                                                                                                                                                                                                      |
| How to interpret a paper chromatogram    | The number of dots/spots tells you how many dyes a colour is made of. The level of each dot/spot tells you which dye is contained.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                                                                                                                                                                                                                                                                                      |
| What is chromatography                   | Method to separate a mixture of soluble substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                                                                                                                                                                                                                                                                                                      |
| What is a food additive                  | Substance added to food to improve colour, taste, appearance and shelf life (preservatives are added).                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Carrier gas Thermostatic Detector                                                                                                                                                                                                                                                                                                    |
| How to carry out paper                   | Draw a pencil line 1cm from the bottom of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | oven                                                                                                                                                                                                                                                                                                                                 |
| chromatography                           | paper (pencil will not smudge). Transfer the<br>colour investigated onto the pencil line. Place the<br>paper into the solvent so that only the tip of the<br>paper touches the solvent (if the pencil line is<br>submerged in water, the colour will wash off<br>instead of rising up the paper). Place a lid over<br>the beaker (to prevent evaporation of the solvent).<br>Wait until the solvent has risen up the paper. The<br>dye that dissolves best in the solvent rises<br>furthest. The dye that dissolves least stays near<br>the bottom of the paper. | How to interpret a gas chromatogram | Height of the peak = amount of the component in<br>the mixture<br>Time = retention time = how long the component<br>took to travel through the column. The retention<br>time can be looked up in a data book to identify the<br>component.<br>Number of peaks = how many components were in<br>the mixture                           |
|                                          | 1 Solvent<br>2 paper<br>3 known colour<br>4 unknown<br>colours<br>5 solvent line<br>6 pencil line                                                                                                                                                                                                                                                                                                                                                                                                                                                                | What is a mass spectrum             | Two components could have the same retention<br>time. To distinguish between the components, a<br>mass spectrum is run to identify the relative<br>molecular mass of the component. The relative<br>molecular mass is the peak furthest to the right:                                                                                |



| Time/mi                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Two components could have the same retention<br>time. To distinguish between the components, a<br>mass spectrum is run to identify the relative<br>molecular mass of the component. The relative<br>molecular mass is the peak furthest to the right: |

## molecular mass peak



| C2 Covalent bonding                                        |                                                                                                                                                                                                   |                                                             |                                                                                                                                                                                                                                                                    |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Define simple molecule                                     | A small group of atoms bonded together by strong covalent bonds.                                                                                                                                  | Why graphite conducts electricity                           | Each carbon atom forms three covalent bonds with<br>other carbon atoms. This leaves one electron per<br>atom free to move between the layers and through<br>the structure.                                                                                         |  |  |
| Dot and cross diagram for water                            | H                                                                                                                                                                                                 | Why graphite is a solid and has a high melting point        | It forms a giant lattice with many strong covalent bonds that need to be broken to melt graphite.                                                                                                                                                                  |  |  |
| Dot and cross diagram for $NH_3$ ammonia                   |                                                                                                                                                                                                   | Why graphite is soft and slippery                           | Graphite is made of layers which are held together<br>by weak intermolecular forces. These<br>intermolecular forces are easily overcome which<br>allows the layers to slide under pressure.                                                                        |  |  |
| Dot and cross diagram for oxygen O <sub>2</sub>            |                                                                                                                                                                                                   | Why diamond does not conduct electricity                    | Each carbon atom is bonded to four other carbon atoms leaving no electron free to move through the structure.                                                                                                                                                      |  |  |
| Dot and cross diagram for methane $CH_4$                   |                                                                                                                                                                                                   | Why diamond is hard                                         | It forms a giant lattice with many strong covalent bonds.                                                                                                                                                                                                          |  |  |
| Dot and cross diagram for carbon dioxide CO <sub>2</sub>   |                                                                                                                                                                                                   | Why diamond has a higher melting point than graphite        | Each carbon atom in diamond is bonded to four<br>other carbon atoms. In graphite, each carbon atom<br>is only bonded to three other carbon atoms. It takes<br>more energy to break 4 bonds per carbon atom in<br>diamond than 3 bonds per carbon atom in graphite. |  |  |
| Covalent bond definition                                   | Shared pair of electrons                                                                                                                                                                          | Why simple covalent molecules do not conduct electricity    | They don't have free electrons.                                                                                                                                                                                                                                    |  |  |
| Why boiling and melting points of simple molecules are low | There are only weak intermolecular forces<br>between the molecules. It takes little energy to<br>overcome these forces and separate the<br>molecules (note, the covalent bonds are not<br>broken) | Which type of elements combine to form covalent structures? | Non-metals                                                                                                                                                                                                                                                         |  |  |
| Draw diamond and graphite and graphite                     |                                                                                                                                                                                                   | Define giant covalent structure                             | Huge number of atoms held together by a network<br>of strong covalent bonds. (e.g. graphite, diamond,<br>silica [sand], graphene)                                                                                                                                  |  |  |

| C2 Ionic compounds & Electrolysis                                                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                                                                                                                                                                                                                                                                         |  |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Which elements combine to form ionic compounds?                                  | Metal and non-metal                                                                                                                                                                                                                                                                                                                    | Which reaction happens at the anode                                                              | Negative anions lose electrons at the anode = oxidation: $2Cl^{-} \rightarrow Cl_2 + 2e^{-}; 2O^{2^{-}} \rightarrow O_2 + 4e^{-}$                                                                                                                                                       |  |  |
| What is an ionic bond?                                                           | Electrostatic attraction between oppositely charged ions                                                                                                                                                                                                                                                                               | Which reaction happens at the cathode                                                            | Positive cations gain electrons at the cathode = reduction: $Mg^{2+} + 2e- \rightarrow Mg$ ; $2H^+ + 2e- \rightarrow H_2$                                                                                                                                                               |  |  |
| How is an ionic<br>compound such as MgCl <sub>2</sub><br>formed?                 | Each magnesium atom loses two electrons to form a Mg <sup>2+</sup> ion. Each chlorine atom gains one electron forming 2Cl <sup>-</sup> ions. The ions attract.                                                                                                                                                                         | Describe the electrolysis of aluminium oxide (bauxite)                                           | Bauxite $(Al_2O_3)$ is mixed with cryolite to lower the melting point and reduce energy requirement to save fossil fuels and reduce $CO_2$ emissions.                                                                                                                                   |  |  |
| Explain why melting and<br>boiling points of ionic<br>compounds are high         | lonic compounds form a giant ionic lattice with<br>strong electrostatic attractions between the<br>oppositely charge ions. A lot of energy is needed<br>to separate the ions and break the strong bonds.                                                                                                                               | Carbon<br>cathode                                                                                | Aluminium ions move to the cathode where they<br>gain 3 electrons to make Al (reduction): $Al^{3+} + 3e^{-} \rightarrow Al$ . Oxide ions move to the anode where they<br>lose 2 electrons each, form oxygen atoms and pair<br>up to form oxygen gas: $2O^{2-} \rightarrow O_2 + 4e^{-}$ |  |  |
| Explain why solid ionic<br>compounds cannot<br>conduct electricity               | The ions are fixed in place and cannot move.                                                                                                                                                                                                                                                                                           |                                                                                                  | (oxidation). The oxygen gas reacts with the carbon<br>anode to form carbon dioxide. The anode is used<br>up and has to be replaced regularly.                                                                                                                                           |  |  |
| Explain why molten or<br>dissolved ionic<br>compounds can conduct<br>electricity | The ions are now free to move and carry charge to the oppositely charged electrode.                                                                                                                                                                                                                                                    | Describe the electrolysis of brine $\hat{\Box}  \hat{\Box}$                                      | Brine is salt water (dissolved NaCl). The ions present in brine are H <sup>+</sup> and Na <sup>+</sup> as well as Cl <sup>-</sup> and OH <sup>-</sup> . The H <sup>+</sup> and OH <sup>-</sup> come from water. At the cathode, H <sup>+</sup> ions are discharged to form H atoms      |  |  |
| Define oxidation and reduction                                                   | Loss of electrons = oxidation<br>Gain of electrons = reduction                                                                                                                                                                                                                                                                         | Chlorine gas<br>Hydrogen gas<br>Sodum chloride<br>solution (brine)                               | which pair up to make H <sub>2</sub> gas. Na <sup>+</sup> is not discharged as sodium is more reactive than hydrogen. At the anode, Cl <sup>-</sup> ions lose an electron                                                                                                               |  |  |
| Define electrolysis                                                              | Splitting an ionic compound using electricity                                                                                                                                                                                                                                                                                          | Sodium hydroxide                                                                                 | each, form CI atoms which pair up to make Cl <sub>2</sub> gas.<br>The Na <sup>+</sup> and OH <sup>-</sup> ions left behind form NaOH<br>solution. H <sub>2</sub> gas is a rocket fuel, Cl <sub>2</sub> is used to<br>disinfect water, NaOH is used to make bleach.                      |  |  |
| Charge of the anode<br>Charge of the cathode                                     | Positive (anions are negative & move to anode)<br>Negative (cations are positive & move to cathode)                                                                                                                                                                                                                                    | Describe silver plating<br>e <sup>↑</sup> <sup>Voltage</sup> <sup>−</sup><br>source <sup>−</sup> | Use silver as the anode. Use the object to be plated<br>as the cathode. Fill the beaker with silver nitrate                                                                                                                                                                             |  |  |
| Describe how copper is<br>purified                                               | Use impure copper as the anode. Use pure copper as the cathode. Fill the beaker with copper sulfate solution. Copper from the anode will form copper ions and go into the solution:<br>$Cu \rightarrow Cu^{2+} + 2e$ Copper ions will travel to the cathode, gain two electrons and form solid copper: $Cu^{2+} + 2e - \rightarrow Cu$ | silver (anode) $Ag^+$ (cathode) $AgNO_3(aq)$                                                     | and go into the solution: $Ag \rightarrow Ag^+ + e^-$ . Silver ions will travel to the cathode, gain an electron and form solid silver on the surface of the object: $Ag^+ + e^- \rightarrow Ag$                                                                                        |  |  |

| C2 Acids, Bases & Salts                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |                                                                                                                                                                                                                 |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What is an acid?                                 | A proton donor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | What is a base?                                                                                | Proton acceptor                                                                                                                                                                                                 |  |
| Neutralisation ionic<br>equation                 | $H^+ + OH^- \rightarrow H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Give examples of bases                                                                         | Metal oxide, metal carbonate, metal hydroxide, ammonia                                                                                                                                                          |  |
| Hydrochloric acid + base                         | Chloride salts e.g. sodium chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sulfuric acid + base                                                                           | Sulfate salts e.g. magnesium sulfate                                                                                                                                                                            |  |
| Nitric acid + base                               | Nitrate salts e.g. ammonium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acid + metal oxide                                                                             | Salt + water                                                                                                                                                                                                    |  |
| Acid + metal hydroxide                           | Salt + water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acid + metal carbonate                                                                         | Salt + water + carbon dioxide                                                                                                                                                                                   |  |
| Acid + ammonia                                   | Ammonium salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acid + metal                                                                                   | Salt + hydrogen                                                                                                                                                                                                 |  |
| Define alkali                                    | Soluble base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Examples of alkalis                                                                            | Metal hydroxides (NaOH, Ca(OH) <sub>2</sub> ), ammonia $NH_3$                                                                                                                                                   |  |
| Salt uses                                        | Added to fireworks to give colour; added to soil as a fertiliser; medicine; flavour foods                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uses of acids                                                                                  | HCl = stomach acid; sulfuric acid $H_2SO_4$ = battery acid; CH <sub>3</sub> COOH ethanoic acid = vinegar                                                                                                        |  |
| Uses of bases                                    | MgO = milk of magnesia; $CaCO_3$ = indigestion<br>tablets, chalk; NH <sub>3</sub> = window cleaner; NaOH =<br>oven cleaner                                                                                                                                                                                                                                                                                                                                                                                                                              | Insoluble salts examples                                                                       | Lead sulfate, lead chloride, silver chloride, silver<br>bromide, silver iodide, metal carbonates (apart from<br>group 1 carbonates and ammonium carbonate)                                                      |  |
| How to make a salt from an acid and an alkali    | Use a pipette to measure out the alkali. Place<br>alkali into a conical flask. Fill the burette with the<br>acid. Add indicator to the alkali. Slowly add the<br>acid to the alkali. Stop when the indicator<br>changes colour. Note down the volume of acid<br>used. Repeat the experiment without indicator,<br>using the same volumes of acid and alkali.<br>Transfer the solution into an evaporating basin.<br>Heat to evaporate the water until a saturated<br>solution is formed. Leave and wait for the salt<br>crystals to form. Wash and dry. | How to make an insoluble salt from<br>two solutions that contain the<br>components of the salt | Select two solutions that contain the ions needed to make the salt. Mix the two solution. The salt (a precipitate) will form. Filter off the precipitate. Wash the precipitate with water. Dry the precipitate. |  |
| How to make a salt from an acid and a solid base | Measure out the acid into a beaker. Warm the<br>acid to speed up the rate of reaction. Add the<br>solid base until no more dissolves (the base is in<br>excess). Filter off the excess base. Transfer the<br>solution into an evaporating basin. Heat to<br>evaporate the water until a saturated solution is<br>formed. Leave and wait for the salt crystals to<br>form. Wash and dry.                                                                                                                                                                 | Soluble salts examples                                                                         | Group 1 salts, ammonium salts, all nitrates, most<br>chlorides (exceptions lead chloride, silver chloride)                                                                                                      |  |

|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 Moles                                                                                                                                                                 |                             |                           |               |                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|---------------|-----------------|
| How to calculate the<br>percentage by mass of<br>an element in a<br>compound | Mass of the element in the compound divided by the relative formula mass                                                                                                                                                                                                                                                                                                                                                                                                  | E.g. percentage by mass of aluminium in $AI_2O_3$<br>AI = 27; O = 16<br>2AI = 54; $AI_2O_3 = 54 + (3x16) = 102$ ; % by mass of aluminium = 54/102 x 100 = 52.9%          |                             |                           |               |                 |
| How to calculate the relative formula mass of a compound                     | Add all relative atomic masses together                                                                                                                                                                                                                                                                                                                                                                                                                                   | E.g. $AI_2O_3 = (27x2) + (3x16) = 102$                                                                                                                                   |                             |                           |               |                 |
| What is the mass of one mole of an element?                                  | The relative atomic mass                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E.g. 1 mole of Al = 27g<br>1 mole of $O_2$ = 32g                                                                                                                         |                             |                           |               |                 |
| What is the mass of one mole of a compound?                                  | The relative formula mass                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E.g. 1 mole of $Al_2O_3 = 102g$                                                                                                                                          |                             |                           |               |                 |
| Define isotope                                                               | Atoms with the same number of protons but different number of neutrons.                                                                                                                                                                                                                                                                                                                                                                                                   | E.g. O-16 and O-18 are isotopes. Both have 8 protons, but O-16 has 8 neutrons whereas O-<br>18 has 10 neutrons                                                           |                             |                           |               |                 |
| How to calculate the                                                         | Step 1: write down the element symbols                                                                                                                                                                                                                                                                                                                                                                                                                                    | Example 1 with step 5b                                                                                                                                                   |                             |                           |               |                 |
| empirical formula of a                                                       | Step 2: copy the % or mass from the question and write it under each symbol                                                                                                                                                                                                                                                                                                                                                                                               | Al                                                                                                                                                                       | 0                           | Example 2 without step 5b |               |                 |
| percentage or mass of                                                        | Step 3: write the relative atomic mass of each<br>element underneath the % or mass form the<br>question<br>Step 4: divide the % or mass from the question by<br>the relative atomic mass<br>Step 5: Divide each answer from step 4 by the<br>smallest answer from step 4<br>Step 6: write the formula of the compound<br>[Step 5b: if the answers are not close to the<br>nearest whole number, scale up the answers until<br>they are close to the nearest whole number] | 52.0%                                                                                                                                                                    | 47.1%                       | С                         | Н             | 0               |
| each element in the                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02.370                                                                                                                                                                   | 16                          | 40g                       | 6.67g         | 53.33g          |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52 0/27 - 1 06                                                                                                                                                           | 10                          | 12                        | 1             | 16              |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.06/1.06 - 1                                                                                                                                                            | 47.1/10 = 2.94              | 40/12 = 3.33              | 6.67/1 = 6.67 | 53.33/16 = 3.33 |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,90/1.90 - 1                                                                                                                                                            | 2.94/1.90 - 1.0             | 3.33/3.33 =1              | 6.67/3.33 =2  | 3.33/3.33=1     |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | 1.5 X 2 - 5                 | - CH <sub>2</sub> O       |               |                 |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                          | <sub>2</sub> O <sub>3</sub> |                           |               |                 |
| Define empirical formula                                                     | Simplest ratio of atoms of each element in the compound                                                                                                                                                                                                                                                                                                                                                                                                                   | E.g. molecular formula = $C_6H_6$ ; empirical formula = CH<br>E.g. molecular formula = empirical formula = $C_3H_8$                                                      |                             |                           |               |                 |
| Percentage yield                                                             | Actual amount/expected amount x 100                                                                                                                                                                                                                                                                                                                                                                                                                                       | E.g. 98t made, 112t expected. % yield = 98/112 x 100 = 87.5%; some product was lost in transferring chemicals; some product might have escaped as a gas or reacted back. |                             |                           |               |                 |
| Calculating theoretical yield                                                | Use the balanced equation to work out the starting masses. Then use information from the question to scale up or down.                                                                                                                                                                                                                                                                                                                                                    | How much water can be made from 2g of hydrogen? $2H_2 + O_2 \rightarrow 2H_2O$ . $2H_2 = 4g 2H_2O = 36g$ . So from 2g of hydrogen you can make 18g of water.             |                             |                           |               |                 |

| C3 Identifying | unknown | compounds | Knowledge         | Organiser |
|----------------|---------|-----------|-------------------|-----------|
| ee raenaryn ig |         | oompoundo | i li lo il lo ago | gaineer   |

| Lithium flame colour                                                    | Crimson                                                                                                                         | How to carry out the flame test |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Sodium flame colour                                                     | Yellow                                                                                                                          |                                 |
| Potassium flame colour                                                  | Lilac                                                                                                                           |                                 |
| Barium flame colour                                                     | Green                                                                                                                           |                                 |
| Calcium flame colour                                                    | Brick red                                                                                                                       |                                 |
| Iron (II)/Fe <sup>2+</sup> + NaOH                                       | Green precipitate of Fe(OH) <sub>2</sub> forms                                                                                  |                                 |
| Iron(III)/Fe <sup>3+</sup> + NaOH                                       | Orange-brown precipitate of Fe(OH) <sub>3</sub> forms                                                                           |                                 |
| Ca <sup>2+</sup> + NaOH                                                 | White precipitate of $Ca(OH)_2$ forms which does not dissolve if excess NaOH is added                                           |                                 |
| Al <sup>3+</sup> + NaOH                                                 | White precipitate of $AI(OH)_3$ forms which does dissolve if excess NaOH is added                                               |                                 |
| Copper (II)/Cu <sup>2+</sup> + NaOH                                     | Blue precipitate of Cu(OH) <sub>2</sub> forms                                                                                   |                                 |
| Mg <sup>2+</sup> + NaOH                                                 | White precipitate of Mg(OH) <sub>2</sub> forms which does not dissolve if excess NaOH is added                                  |                                 |
| Test for sulfate ions SO <sub>4</sub> <sup>2-</sup><br>and observations | Add HCl to remove any carbonate impurities. Add barium chloride. A white precipitate of barium sulfate BaSO <sub>4</sub> forms. |                                 |
| Test for carbonate ions $CO_3^{2-}$ and observations                    | Add any acid. Bubbles of CO <sub>2</sub> will form.                                                                             | Ionic equation to show how the  |
| Test for chloride ions Cl <sup>-</sup><br>and observations              | Add nitric acid to remove any carbonate impurities. Add silver nitrate. A white precipitate of AgCl forms.                      | precipitates form               |
| Test for bromide ions Br<br>and observations                            | Add nitric acid to remove any carbonate<br>impurities. Add silver nitrate. A cream precipitate<br>of AgBr forms.                |                                 |
| Test for iodide ions I <sup>-</sup> and observations                    | Add nitric acid to remove any carbonate impurities. Add silver nitrate. A yellow precipitate of AgI forms.                      |                                 |

Dip nichrome wire loop into concentrated HCI. Heat the wire.

This will get of any impurities on the wire loop. Put a small amount of compound to be tested onto wire loop and hold the loop in the roaring blue flame.

Use the colour to identify the ion present.

| ہ کہ کہ کہ کہ                    |                |
|----------------------------------|----------------|
| LITHIUM SODIUM POTASSIUM CALCIUM | BARIUM<br>Bath |

 $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}$ 

 $Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{3}$ 

 $\begin{array}{l} \mathsf{Ca}^{2+} + 2\mathsf{OH}^{-} \rightarrow \mathsf{Ca}(\mathsf{OH})_2 \\ \mathsf{Cu}^{2+} + 2\mathsf{OH}^{-} \rightarrow \mathsf{Cu}(\mathsf{OH})_2 \\ \mathsf{AI}^{3+} + 3\mathsf{OH}^{-} \rightarrow \mathsf{Al}(\mathsf{OH})_3 \\ \mathsf{Mg}^{2+} + 2\mathsf{OH}^{-} \rightarrow \mathsf{Mg}(\mathsf{OH})_2 \\ \mathsf{Ba}^{2+} + \mathsf{SO}_4^{2-} \rightarrow \mathsf{BaSO}_4 \\ \mathsf{Ag}^{+} + \mathsf{CI}^{-} \rightarrow \mathsf{AgCI} \end{array}$ 

 $Ag^+ + Br^- \rightarrow AgBr$  $Ag^+ + I^- \rightarrow AgI$  Iron(II) hydroxide Iron(III) hydroxide Calcium hydroxide Copper(II) hydroxide Aluminium hydroxide Magnesium hydroxide Barium sulfate Silver chloride Silver bromide Silver nodide

| C3 Organic Chemistry Knowledge Organiser                          |                                                                                                                                                                                   |                                                                             |                                                                                                                                                                                                                                                                          |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1 Functional group                                                | A group of atoms or bonds that determine how a compound reacts                                                                                                                    | 15 Carboxylic acid test 2                                                   | Add a metal carbonate (e.g. sodium carbonate). Bubbles of $CO_2$ gas will be released.                                                                                                                                                                                   |  |  |
| 2 Alcohol                                                         | Compounds that contain a –OH group General formula: $C_nH_{2n+1}OH$                                                                                                               | 16 Carboxylic acid + alkali<br>(ethanoic acid + sodium hydroxide)           | → salt+ water<br>(sodium ethanoate + water)                                                                                                                                                                                                                              |  |  |
| 3 Methanol, Ethanol,<br>Propanol, Butanol                         | CH <sub>3</sub> OH, CH <sub>3</sub> CH <sub>2</sub> OH, CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH,<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH | 17 Carboxylic acid + metal oxide<br>(ethanoic acid + sodium oxide)          | → salt+ water<br>(sodium ethanoate + water)                                                                                                                                                                                                                              |  |  |
| 4 Alcohol uses                                                    | Solvents, fuels, disinfectants, alcoholic beverages                                                                                                                               | 18 Carboxylic acid + metal carbonate<br>(ethanoic acid + calcium carbonate) | $\rightarrow$ salt+ water + carbon dioxide<br>(calcium ethanoate + water + carbon dioxide)                                                                                                                                                                               |  |  |
| 5 Alcohol properties                                              | pH = 7 (neutral); volatile (evaporate easily)                                                                                                                                     | 19 Ester                                                                    | Compounds that contain –COO- bridge                                                                                                                                                                                                                                      |  |  |
| 6 Alcohol + sodium                                                | $\rightarrow$ hydrogen bubbles + sodium ethoxide                                                                                                                                  | 20 Ester uses                                                               | Perfumes, food flavourings, solvent                                                                                                                                                                                                                                      |  |  |
| 7 Alcohol + oxygen                                                | → carbon dioxide + water (combustion reaction)<br>$CH_3OH + 1.5O_2 \rightarrow CO_2 + 2H_2O$<br>$CH_3CH_2OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$                                     | 21 Ethyl ethanoate                                                          | $ \begin{array}{c} H \\ H \\ -C \\ -C \\ H \\ -C \\ -C \\ -C \\ -H \\ H \\ H \end{array} $                                                                                                                                                                               |  |  |
| 8 Alcohol + carboxylic<br>acid (with a sulfuric acid<br>catalyst) | → ester+ water<br>$CH_3CH_2OH + CH_3COOH \rightarrow CH_3COOCH_2CH_3 + H_2O$                                                                                                      | 22 Ester properties                                                         | Fruity, sweet smelling                                                                                                                                                                                                                                                   |  |  |
| 9 Alcohol + acidified<br>potassium dichromate                     | → carboxylic acid (oxidation reaction)<br>Observation: orange potassium dichromate turns<br>green                                                                                 | 23 Molecular formula                                                        | Gives the type of element and the number of each element in the compound, e.g. $C_2H_6O$                                                                                                                                                                                 |  |  |
| 10 Carboxylic acid                                                | Compounds that end on –COOH;<br>general formula C <sub>n</sub> H <sub>2n+1</sub> COOH                                                                                             | 24 Displayed formula                                                        | Shows all the bonds in the compound (example: see ethyl ethanoate)                                                                                                                                                                                                       |  |  |
| 11 Methanoic, Ethanoic,<br>Propanoic acid                         | HCOOH, CH <sub>3</sub> COOH, CH <sub>3</sub> CH <sub>2</sub> COOH                                                                                                                 | 25 Burning fuels experiment                                                 | Use measuring cylinder to fill calorimeter with 100ml of water. Measure temperature of water. Add                                                                                                                                                                        |  |  |
| 12 Carboxylic acid<br>properties                                  | Weak acids with a pH of 4-6 which is higher than<br>the pH of strong acids; carboxylic acids are weak<br>acids because they only partially dissociate when<br>dissolved in water  | Calorimeter                                                                 | a lid to prevent heat loss. At draught excluders to<br>prevent heat loss. Measure mass of spirit burner.<br>Light fuel. Extinguish flame after a fixed amount of<br>time (e.g. 2 minutes). Record temperature rise.<br>Reweigh spirit burner. Find out how much fuel was |  |  |
| 13 Carboxylic acid uses                                           | Food flavourings (e.g. ethanoic acid is added to vinegar to give flavour)                                                                                                         | Spirit burner                                                               | burned. Calculate the temperature rise per gram of fuel burned. To prevent heat loss by evaporation,                                                                                                                                                                     |  |  |
| 14 Carboxylic acid test 1                                         | Add universal indicator: if a carboxylic acid is present, the indicator turns orange-red                                                                                          | Hydrocarbon fuel                                                            | use a larger volume of water. If the fuel does not<br>burn completely, but incompletely, the energy<br>released is lower than expected.                                                                                                                                  |  |  |

|                                                | C3 Equilibria Ch                                                                                                                         | emistry knowledge Organiser                                 |                                                                                                                                                                                                                                         |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ammonia formula                                | NH <sub>3</sub>                                                                                                                          | What is ideal pressure to maximise ammonia yield?           | Pressure should be high. There are 4 gas<br>molecules on the left hand side and 2 gas<br>molecules on the right hand side. At high pressure<br>the equilibrium favours the forward reaction and the<br>equilibrium shifts to the right. |  |
| Haber process equation                         | $N_2 + 3H_2 \rightleftharpoons 2NH_3$                                                                                                    | Why is a lower pressure used?                               | High pressure is expensive as the reaction vessel needs to have reinforced walls. This costs a lot of money. A lower pressure is used despite the loss of yield as a compromise.                                                        |  |
| Where raw materials for come from              | Nitrogen: from fractional distillation of air<br>Hydrogen: from reaction of methane with steam                                           | What is the ideal temperature to have a high ammonia yield? | Ideal temperature is low. The forward reaction is exothermic. At low temperature, the forward reaction is favoured and the equilibrium shifts right.                                                                                    |  |
| Ammonia uses                                   | To make fertilisers, explosives and dyes                                                                                                 | Why is a higher temperature used?                           | A low temperature results in a slow rate. A slightly higher temperature and a catalyst are used to increase the rate of reaction.                                                                                                       |  |
| Reactants needed to make ammonium nitrate      | Ammonia and nitric acid                                                                                                                  | What happens to the ammonia produced and why?               | The ammonia gas is cooled and condensed and removed to prevent it from reacting backwards.                                                                                                                                              |  |
| Reactants needed to make ammonium sulfate      | Ammonia and sulfuric acid                                                                                                                | Why do plants need nitrogen?                                | To build amino acids which are needed to build proteins.                                                                                                                                                                                |  |
| Why fertilisers are soluble                    | So that they can be absorbed through the roots.                                                                                          |                                                             |                                                                                                                                                                                                                                         |  |
| What happens to unreacted $H_2$ and $N_2$ ?    | They are recycled                                                                                                                        |                                                             | $-H_2 + N_2$                                                                                                                                                                                                                            |  |
| Temperature, pressure, catalyst used           | 450°C, 200atm, iron catalyst                                                                                                             |                                                             |                                                                                                                                                                                                                                         |  |
| How can fertilisers end up in people's bodies? | Fertilisers are washed into rivers and get into drinking water.                                                                          | $ \xrightarrow{H_2 + N_2} $                                 |                                                                                                                                                                                                                                         |  |
| Closed system                                  | Sealed reaction vessel. Nothing can enter and nothing can leave the vessel.                                                              | Reactor                                                     |                                                                                                                                                                                                                                         |  |
| Equilibrium definition                         | Forward and backward reaction take place at the same time and rate and the overall quantities of reactants and products remain the same. | the<br>of                                                   |                                                                                                                                                                                                                                         |  |
| Haber process exo/endo?                        | exothermic                                                                                                                               |                                                             |                                                                                                                                                                                                                                         |  |

| C3 Periodic Table Chemistry Knowledge Organiser                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How many groups in Newland's table?                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                      | Why was it easy to add the noble gases to Mendeleev's PT?                                                                                                                                                                                                                                                                 | Because they could just be added to the end of the table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| How was the Newland's<br>table arranged?By atomic mass and every 8th element was<br>meant to have similar properties but the pattern<br>broke down after the third row.Why can we be certain that there are<br>no more new elements that fit<br>between two elements? |                                                                                                                                                                                                                                        | The elements are arranged in atomic<br>number/proton number order. To fit an element<br>between two elements would involve splitting a<br>proton.                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For which elements did Newland's pattern work?                                                                                                                                                                                                                        | F, Cl, Br, I Li, Na, K Mg, Ca B, Al<br>C, Si N, P O, S                                                                                                                                                                                 | In which group do you find the noble gases?                                                                                                                                                                                                                                                                               | Group 0/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Why was Newland criticised?                                                                                                                                                                                                                                           | Metals and non-metals were not separated; the<br>pattern broke down after the third row; some<br>boxes contained two elements; no gaps left for<br>undiscovered elements                                                               | The noble gases are inert. What does this mean?                                                                                                                                                                                                                                                                           | They are unreactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| How many groups are there in Mendeleev's table?                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                      | Why are the noble gases inert?                                                                                                                                                                                                                                                                                            | They all have a full outer shell and do not need to lose or gain any electrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| How did Mendeleev<br>arrange the elements?                                                                                                                                                                                                                            | First in atomic mass order but then he changed<br>some elements around to ensure that all elements<br>in one group share the same chemical properties.<br>He left gaps for undiscovered elements. He<br>divided metals and non-metals. | What are the noble gases helium, neon, argon, krypton used for?                                                                                                                                                                                                                                                           | Helium: in airships<br>Neon: In light bulbs/advertising signs<br>Argon: In light bulbs/lasers/sealed food packages to<br>prevent food from decomposing<br>Krypton:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Why was Mendeleev criticised?                                                                                                                                                                                                                                         | He did not explain his ideas well. But his table/ideas were accepted when the missing elements were discovered and matched his predictions.                                                                                            | Newlands' Octaves (his 'Periodic Table' of 18           H         Li         Ga         B         C         N           F         Na         Mg         Al         Si         P           Cl         K         Ca         Cr         Ti         Mn           Co, Ni         Cu         Zn         Y         In         As | Image: Non-Section 1         Image: No |
| How are the elements<br>arranged in today's<br>Periodic Table?                                                                                                                                                                                                        | In atomic number (proton number) order                                                                                                                                                                                                 | BrRbSrCe, LaZrDi, MoPdAgCdUSnSbICsBa, VTaWNbPt, IrTIPbThHgBi                                                                                                                                                                                                                                                              | Ro, Ru         Rb         Sr         Y         Zr         Nb         Mo         Ru         Rh         Pd           Ag         Cd         In         Sn         Sb         Fe         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| How many groups are there in today's PT?                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Elements in the same group have the same                                                                                                                                                                                                                              | Outer electron configuration and therefore the same chemical properties.                                                                                                                                                               | (ASA)                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| What is today's PT used for?                                                                                                                                                                                                                                          | The electron structure is used to predict how elements react.                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                                               | C3 Periodic Table II                                                                                                                                    | Chemistry Knowledge Organiser                                                                                  |                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| What is Group 1 called?                                                       | Alkali metals                                                                                                                                           | Colour of the halogens                                                                                         | Fluorine = yellow, chlorine = green, bromine =<br>brown, iodine = purple-black                                                                                                                                               |  |
| What is Group 7 called?                                                       | Halogens                                                                                                                                                | States of the halogens                                                                                         | Fluorine and chlorine = gas, bromine = liquid,<br>iodine = solid                                                                                                                                                             |  |
| Where are the transition metals found?                                        | In the middle of the Periodic table                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                              |  |
| What is the density of<br>Group 1 metals<br>compared to Transition<br>metals? | Less dense                                                                                                                                              | Trend in reactivity down group 7 with a reason                                                                 | Reactivity decreases as the atoms get bigger so the outer shell is more shielded from the nuclear charge and it is harder to attract an 8 <sup>th</sup> electron to the outer shell.                                         |  |
| When Group 1 metals react, what happens in terms of electrons?                | They lose their outer electron and form 1+ ions                                                                                                         | Halogen displacement reactions                                                                                 | A more reactive halogen can displace a less reactive halogen from an aqueous solution of its salt.                                                                                                                           |  |
| When Group 7 atoms react, what happens in terms of electrons?                 | They gain an electron to make a full outer shell and form 1- ions                                                                                       | CI                                                                                                             | KBr KI<br>Yellow/brown Purple                                                                                                                                                                                                |  |
| Alkali metal + water =                                                        | Hydrogen + metal hydroxide solution                                                                                                                     | Br Orange/bro                                                                                                  | [y] [y]<br>Burnle                                                                                                                                                                                                            |  |
| Lithium + water =                                                             | Lithium hydroxide + hydrogen; lithium skids across the surface of the water                                                                             | [n]                                                                                                            | Purple                                                                                                                                                                                                                       |  |
| Sodium + water =                                                              | Sodium hydroxide + hydrogen; sodium melts into a ball that skids across the surface of water                                                            | When a halogen is part<br>with Potassium it can be                                                             | of a solution<br>e used to make a<br>$Cl_2 + 2KBr \rightarrow 2KCl + Br_2$                                                                                                                                                   |  |
| Potassium + water =                                                           | Potassium hydroxide + hydrogen; so much heat is produced, the hydrogen gas ignites and burns with a lilac flame.<br>$2K + 2H_2O \rightarrow 2KOH + H_2$ | $ \begin{bmatrix} n \end{bmatrix} = n \\ reaction \\ [y] = a \\ reaction \\ reaction \\ \hline \end{bmatrix} $ | where possible.<br>oy the colours<br>a reactive<br>compounds. $Cl_2 + 2KI \rightarrow 2KCI + l_2$<br>$Br_2 + 2KCI \rightarrow X$<br>$Br_2 + 2KCI \rightarrow X$<br>$Br_2 + 2KCI \rightarrow X$<br>$l_2 + 2KCI \rightarrow X$ |  |
| Why are Group 1 metals called the alkali metals?                              | Because when they react with water they make an alkaline solution of metal hydroxide                                                                    | Transition metals properties                                                                                   | They are harder than group 1 and 2 metals<br>They form coloured compounds                                                                                                                                                    |  |
| Describe and explain the trend in reactivity down group 1                     | Reactivity increases as the outer electron is further<br>from the pull of the nucleus and therefore lost more<br>easily as it is more shielded.         |                                                                                                                | They have a higher melting point than group and 2<br>metals<br>They are good catalysts<br>They form different ions with different charges, e.g.                                                                              |  |
| What is the trend in melting points down group 1?                             | Alkali metals become softer down the group, so the melting point decreases.                                                                             |                                                                                                                | Iron (II) and Iron (III)                                                                                                                                                                                                     |  |

| C3 Water & Water treatment Chemistry Knowledge Organiser |                                                                                                                                                                                                              |                                                                                                                                     |                                                                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| What is clean water?                                     | Water that contains low levels of dissolved substances and micro-organisms.                                                                                                                                  | What is hard water?                                                                                                                 | Water that contains dissolved magnesium and calcium ions                                                                                                                                                                                                           |  |  |
| What is pure water?                                      | Only H <sub>2</sub> O contained. Produced by distillation of water which is expensive as it requires a lot of energy.                                                                                        | How does water become hard?                                                                                                         | Acidic rain water runs over rocks dissolving calcium<br>and magnesium based rocks:<br>$CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}$                                                                                                                          |  |  |
| Describe screening                                       | Water passes through a screen to catch large objects (leaves, twigs,)                                                                                                                                        | What is temporary hardness?                                                                                                         | Water that contains calcium ions or magnesium ions and $\text{HCO}_3^-$ ions.                                                                                                                                                                                      |  |  |
| Describe settlement                                      | Water is left to stand so sand and soil settle to the bottom of the tank                                                                                                                                     | What is permanent hardness?                                                                                                         | Water that contains calcium ions or magnesium ions but no $\text{HCO}_3^-$ ions.                                                                                                                                                                                   |  |  |
| Describe flocculation                                    | Aluminium sulfate is added to the water. Metal ions clump together and sink to the bottom. The sludge is collected and dumped.                                                                               | How do you show water is hard?                                                                                                      | Add water sample into test tube. Add 1 drop of soap solution. Seal the test tube with a bung. Shake. Scum forms rather than a lather.                                                                                                                              |  |  |
| Describe filtration                                      | Water is passed through fine sand to filter it.                                                                                                                                                              | How do you show water sample 1 is twice as hard as water sample 2?                                                                  | Add water samples into test tube. Add 1 drop of<br>soap solution to each sample. Seal the test tubes<br>with a bung and shake. Keep adding 1 drop of<br>soap solution at a time until a stable lather forms.<br>Sample 1 will require twice as much soap solution. |  |  |
| Describe chlorination                                    | Chlorine is bubbled through the water to kill bacteria.                                                                                                                                                      | How do you remove temporary hardness?                                                                                               | By boiling the water. Limescale (CaCO <sub>3</sub> ) is formed.<br>Ca <sup>2+</sup> + 2HCO <sub>3</sub> <sup>-</sup> $\rightarrow$ CaCO <sub>3</sub> + H <sub>2</sub> CO <sub>3</sub>                                                                              |  |  |
| Describe fluoridation                                    | Fluoride is added to protect teeth from decay.<br>Bacteria responsible for tooth decay can lead to<br>heart damage.                                                                                          | How do you remove permanent<br>hardness? Use a washing soda which c<br>carbonate. The sodium ions<br>replace the calcium ions in th | Use a washing soda which contains sodium carbonate. The sodium ions in the washing soda replace the calcium ions in the hard water.                                                                                                                                |  |  |
| Potential dangers of fluoride consumption                | Excess fluoride might lead to fluorosis (teeth and bones become brittle); brain damage might also occur.                                                                                                     |                                                                                                                                     | Limescale is formed quickly where it can be easily<br>removed.<br>Run the water through an ion exchange resin. The<br>resin is packed with sodium ions or hydrogen ions                                                                                            |  |  |
| Describe neutralisation                                  | Adding chlorine to water makes it acidic. The pH of water needs to be returned to 7 before it goes to the consumer.                                                                                          |                                                                                                                                     | which replace the calcium ions in the hard water.<br>To recharge the resin, it is flushed with salt water.                                                                                                                                                         |  |  |
| What is contained in water filters at home               | Carbon: to absorb toxic chlorine and improve the<br>taste<br>Ion exchange resin: to replace calcium ions with<br>sodium ions (increases salts level in water)<br>Nano-silver: discourage growth of bacteria. | What are the advantages and disadvantages of hard water?                                                                            | Adv: calcium is needed for bone and teeth<br>development. It adds taste and reduces risk of heart<br>diseases.<br>Disadv: Wastes soap. Scum is formed which uses up<br>soap. Limescale insulates heating elements/blocks<br>pipes                                  |  |  |

|                                                                                                           |                                                                                                                                                     | GII |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Define endothermic                                                                                        | Energy is transferred from the surroundings to the chemical system. Thermometer reading goes down                                                   |     |
| Define exothermic                                                                                         | Energy is transferred from the chemical system to the surrounding. Thermometer reading goes up                                                      |     |
| Bond breaking- endo or exo?                                                                               | Endothermic                                                                                                                                         |     |
| Bond making – endo or exo?                                                                                | Exothermic                                                                                                                                          |     |
| Energy of reactants<br>above energy of<br>products=                                                       | Exothermic                                                                                                                                          |     |
| Energy of reactants<br>below energy of products<br>=                                                      | Endothermic                                                                                                                                         |     |
| Activation energy =                                                                                       | Energy required to start the reaction. This is the energy needed to break the bonds.                                                                |     |
| Energy change =                                                                                           | Bond breaking – bond making                                                                                                                         |     |
| Energy (J) =                                                                                              | Mass of liquid that changes temperature x c x change in temperature                                                                                 |     |
| ΔH =                                                                                                      | Energy (kJ) / moles of solid used                                                                                                                   |     |
| When burning a fuel, why<br>is not all of the energy<br>transferred to the water<br>that is being heated? | The fuel burns incompletely rather than completely.<br>Heat is lost to the surroundings and does not reach<br>the container the water is heated in. |     |
| How do you prevent heat<br>loss/gain in an<br>experiment?                                                 | Use a lid or add draught excluders so no heat can enter or escape.                                                                                  |     |

0.2g of ethanol is used to raise the temperature of 50ml of water by 25°C. What is the energy change  $\Delta H$ ?

 $Q = 50g \times 4.2 J K^{-1}g^{-1} \times 25K = 5250 J = 5.25 k J$ 

0.2g ethanol  $(M_r = 46) = 0.0043$  moles (mass/M<sub>r</sub>)

ΔH= 5.25/0.0043 = 1220kJmol-1

The experimental result is often lower than the theoretical value due to heat loss or incomplete combustion of the fuel.

triped



Energy change: (bond energies of bonds broken) - (bond energies of bonds made) ∴  $\Delta H = [(4 \times 4|3) + (2 \times 497)] - [(2 \times 805) + (4 \times 463)]$ ∴  $\Delta H = 2646 - 3642$ ∴  $\Delta H = -816$  kJ mol<sup>-1</sup>

The negative sign indicates that the reaction is overall exothermic. A bond energy represents the energy needed to break 1 mole of a particular bond

| How to calculate moles<br>from concentration and<br>volume                       | Moles = concentration x volume in cm <sup>3</sup> /1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hov |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Concentration unit                                                               | moldm <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| How to convert<br>concentration from<br>moldm <sup>-3</sup> to gdm <sup>-3</sup> | Multiply the concentration in moldm <sup>-3</sup> by the relative formula mass of the compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| How to work out moles from mass in g                                             | Moles = mass/relative formula mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| How to perform a titration                                                       | Use a pipette to measure out a fixed volume of<br>alkali of unknown concentration.<br>Transfer the alkali into a conical flask.<br>Place the conical flask onto a white tile.<br>Add 2-3 drops of indicator.<br>Fill a burette with acid of known concentration.<br>Read off the start volume from the bottom of the<br>meniscus at eye level.<br>Add the acid to the alkali drop by drop and swirl.<br>Stop adding the acid when the indicator changes<br>colour.<br>Read off the end volume of acid from the bottom<br>of the meniscus at eye level. Calculate the titre<br>(the volume of acid used).<br>Repeat the experiment until you have 2<br>concordant titre results.<br>[Concordant = 0.1cm <sup>3</sup> apart]<br>Calculate the average volume of acid used<br>(remember to ignore any anomalous results) |     |

## C3 Titrations Chemistry Knowledge Organiser

How to carry out a titration calculation:

What is the concentration of an NaOH solution if 25.0 cm<sup>3</sup> is neutralized by 23.4 cm<sup>3</sup> 0.998 mol dm<sup>-3</sup> HCl solution?

1. Calculate no.<br/>moles HCI:moles = (conc. × volume) / 1000<br/>= (0.998 × 23.4) / 1000<br/>= 0.02342. Determine ratio<br/>of NaOH to HCI:NaOH + HCI  $\rightarrow$  NaCl + H2O<br/>ratio NaOH:NaCl = 1:13. Calculate no.<br/>moles of NaOH:0.0234 moles HCl = 0.0234 moles NaOH<br/>noles of NaOH:4. Calculate conc.<br/>of NaOH:conc. = (moles × 1000) /<br/>volume (0.0234 × 1000) / 25.0<br/>= 0.936 mol dm³

Concentration of NaOH in gdm<sup>-3</sup>: Relative formula mass of NaOH = 23 + 16 + 1 = 40 $40 \times 0.936 = 37.44$ gdm<sup>-3</sup>

A standard solution was prepared by dissolving 2.6061g sodium carbonate in distilled water and making up to 250cm<sup>3</sup>. A 25.0cm<sup>3</sup> portion of this solution was titrated against hydrochloric acid. **18.7cm<sup>3</sup> of the acid were required for neutralisation. What is the concentration of the acid?** (RMM [Na<sub>2</sub>CO<sub>3</sub>]= 106 gmol<sup>-1</sup>)

