Sodium + Oxygen

$$2N_{a_{(s)}}^{0} + \frac{1}{2}O_{2(q)}^{0} \rightarrow N_{a_{2}}^{+1}O_{(s)}^{-2}$$

Sodium burns with yellow flame
Sodium oxide is a white solid

Magnesium + Oxygen

$$2Mg_{(s)}^{0} + O_{2(g)}^{0} \rightarrow 2MgO_{(s)}^{+2}$$

with a bright white flame.

Magnesium oxide is a white solid

Magnesium burns

Phosphorus + Oxygen

$${}^{0}_{4P_{(s)}} + 5O_{2(g)} \xrightarrow{+5} {}^{-2}_{4}O_{10(s)}$$

White phosphorus* ignites in air. White smoke of the oxide is produced.

White and red phosphorus are allotropes of phosphorus. Red phosphorus must be heated first.

Aluminium + Oxygen

$${\overset{0}{4A}}{\overset{0}{|_{(s)}}} + {\overset{0}{3O_{2(g)}}} \to {\overset{+3}{2A}}{\overset{-2}{|_2O_{3(s)}}}$$

Aluminium* burns brightly. Aluminium oxide is a white powder.

*Aluminium is coated in aluminium oxide which prevents further reaction and makes aluminium appear unreactive.

Sulfur + Oxygen

$$\begin{array}{c}
0 \\
S_{(s)} + O_{2(g)} \rightarrow SO_{2(s)} \\
0 \\
S_{(s)} + 1.5O_{2(g)} \rightarrow SO_{3(g)}
\end{array}$$

Sulfur is heated first; then burns in oxygen with a blue flame. SO_2/SO_3 are colourless and acidic.

Silicon + Oxygen

$$\mathsf{Si}_{(s)}^{0} + O_{2(g)}^{0} \xrightarrow{\mathsf{+4}} \mathsf{\stackrel{-2}{\mathsf{5iO}}}_{2(s)}$$

Na₂O + Water

$$Na_2O_{(s)} + H_2O_{(l)} \rightarrow$$

 $2NaOH_{(aq)}$

Vigorous reaction; NaOH very soluble

pH (NaOH) = 14

MgO + Water

$$MgO_{(s)} + H_2O_{(l)} \rightarrow Mg(OH)_{2(aq)}$$

Mg(OH)₂ sparingly soluble

pH $(Mg(OH)_2) = 9/10$

Al₂O₃ + Water

No reaction Aluminium oxide is insoluble in water

pH = 7

SiO₂ + Water

No reaction Silicon dioxide is insoluble in water

pH = 7

P₄O₁₀ + Water

$$\begin{array}{c} \mathsf{P_4O_{10(s)} + 6H_2O_{(l)}} \to \\ \mathsf{4H_3PO_{4(aq)}} \end{array}$$

Violent reaction Phosphoric acid very soluble

 $pH(H_3PO_4) = 0$

$50_2/50_3$ + Water

$$SO_{2(g)} + H_2O_{(I)} \rightarrow H_2SO_{3(aq)}$$

$$SO_{3(g)} + H_2O_{(I)} \rightarrow H_2SO_{4(\alpha q)}$$

H₂SO₃ moderately soluble; pH = 3 H₂SO₄ very soluble; pH = 0

Na₂O

 $\begin{array}{c} \mathsf{Na_2O_{(s)}} + \mathsf{2HCI_{(aq)}} \to \mathsf{H_2O_{(l)}} \\ + \mathsf{2NaCI_{(aq)}} \end{array}$

Na₂O is a basic oxide

MgO

 $\begin{array}{c} \mathsf{MgO}_{(\mathsf{s})} + 2\mathsf{HCI}_{(\mathsf{aq})} \to \mathsf{H_2O}_{(\mathsf{l})} \\ + \, \mathsf{MgCI}_{2(\mathsf{aq})} \end{array}$

MgO is a basic oxide

Al_2O_3

 $Al_2O_{3(s)} + 6HCl_{(aq)} \rightarrow 2AICl_{3(aq)} + 3H_2O_{(I)}$

 $Al_2O_{3(s)}$ + hot/conc $2NaOH_{(aq)}$ + $3H_2O_{(l)}$ \rightarrow $2Na[Al(OH)_4]_{(aq)}$

Al₂O₃ is an amphoteric oxide

SiO₂

 $SiO_{2(s)}$ + hot/conc $2NaOH_{(aq)} \rightarrow Na_2SiO_{3(aq)}$ + $H_2O_{(l)}$

SiO₂ is an acidic oxide and forms sodium silicate

P₄O₁₀

 $P_4O_{10(s)}$ + 12NaOH_(aq) \rightarrow 6H₂O_(I) + 4Na₃PO_{4(aq)}

 P_4O_{10} is an acidic oxide

50₂/50₃

 $SO_{2(g)}$ + $2NaOH_{(aq)}$ \rightarrow $H_2O_{(l)}$ + $Na_2SO_{3(aq)}$

 $SO_{3(g)} + 2NaOH_{(aq)} \rightarrow H_2O_{(l)} + Na_2SO_{4(aq)}$

 SO_2/SO_3 are acidic oxides

