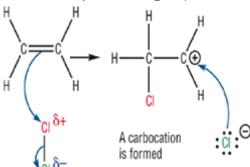
A S

Summary of mechanisms

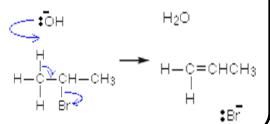

CHEMISTRY

Type of reaction:

electrophilic addition

Electrophiles:

 $\mathsf{H}^{\delta+}$ in H_2 (Ni catalyst needed), $\mathsf{H}^{\delta+}$ in $\mathsf{H}\text{-}\mathsf{X}$; $\mathsf{X}^{\delta+}$ in X_2 ; $\mathsf{H}^{\delta+}$ in $\mathsf{H}_2\mathsf{O}_{(g)}$ (conc $\mathsf{H}_3\mathsf{PO}_4$ cat needed); $\mathsf{H}^{\delta+}$ in NH_3 ; $\mathsf{H}^{\delta+}$ in $\mathsf{H}_2\mathsf{SO}_4$



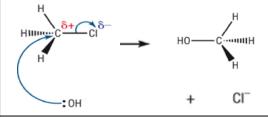
Type of reaction:

Elimination reaction

Examples:

Reaction of RX with hot, ethanolic metal hydroxide:

Summary of mechanisms

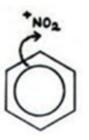

CHEMISTRY

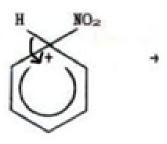
Type of reaction:

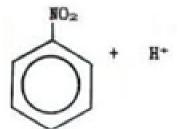
Nucleophilic substitution/hydrolysis

Examples:

Haloalkanes with aqueous metal hydroxide (OH- is the nucleophile); ethanol solvent required as haloalkanes do not mix with water.


Haloalkane with cyanide ion to produce a nitrile R-CN. Useful reaction as the chain length increases by one carbon atom.


Haloalkane with excess ammonia in ethanol under pressure. The product is a primary amine: R-X + 2NH₃ → R-NH₂ + NH₄+X-


Nitration of Benzene

CHEMISTRY

Type of reaction:
electrophilic substitution
Electrophile:
NO₂+

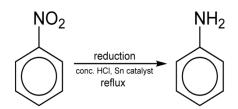
Nitration of Benzene

CHEMISTRY

Formation of electrophile:

Concentrated nitric acid reacts with concentrated sulfuric acid catalyst at 55°C:

$$HNO_3 + H_2SO_4 \rightarrow$$


$$H_2NO_3^+ + HSO_4^-$$

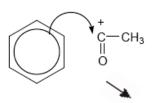
$$H_2NO_3^+ \to NO_2^+ + H_2O$$

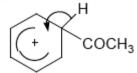
Reduction of nitrobenzene to phenylamine:

$$C_6H_5NO_2 + 6[H] \rightarrow$$

 $C_6H_5NH_2 + 2H_2O$

NOTE: Using tin and conc HCl produces the salt $C_6H_5NH_3^+Cl^-NaOH_{(aq)}$ is added to remove the salt and form phenylamine


A 2


Friedel-Crafts Acylation

CHEMISTRY

Type of reaction: electrophilic substitution

Electrophile:

Note: if you are asked to add an alkene to the benzene ring, you need to add HCl first to create a haloalkane. The haloalkane will then react with the carrier AlCl₃ to produce an electrophile:

$$CH_2=CH_2 + HCI \rightarrow CH_3CH_2CI$$

$$CH_3CH_2CI + AICI_3 \rightarrow$$

 $CH_3CH_2^+ + AICI_4^-$


Friedel-Crafts Acylation

CHEMISTRY

Formation of electrophile:

AICI₃/FeBr₃ Halogen carrier in warm conditions (AI has only 6 electrons in AICI₃ and can accept 2 more electrons forming a co-ordinate bond with CI⁻)

$$AICI_{4}$$
 + $RC^{+}=O$

Example equation for acylation of benzene:

$$C_6H_6 + CH_3COCI \rightarrow$$

Chain lengthening

CHEMISTRY

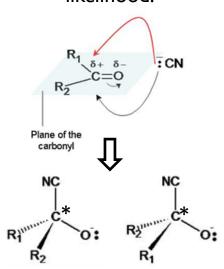
Type of reaction: nucleophilic addition Nucleophile:

:CN

CH₃CHO + HCN → CH₃CH(OH)CN

Note: HCN is highly toxic and has to be prepared in situ. It is created by reacting KCN with dilute HCI which produces HCN.

Further reaction:


The 2-hydroxypropanenitrile can be reacted with dilute HCl, which produces 2-hydroxypropanoic acid (lactic acid) and ammonium chloride:

 $CH_3CH(OH)CN + HCI + 2H_2O$ $\rightarrow CH_3CH(OH)COOH + NH_4CI$ Chain lengthening

CHEMISTRY

Optical activity

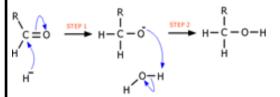
The reaction produces a racemic mixture as the nucleophile can attack from above or below the planar >C=O group with equal likelihood:

Importance or reaction:

Chain length greater
Optical isomers produced

A 2

Reduction of carbonyls


CHEMISTRY

Type of reaction:

Nucleophilic addition.

Nucleophile:

H:⁻

Equation:

RCHO +
$$2[H] \rightarrow RCH_2OH$$

The reaction will also turn ketones into secondary alcohols.

The reducing agent is NaBH₄ in warm aqueous solution or LiAlH₄ in dry ether which are represented as 2[H] in the equation. The first H is produced by the reducing agent, the second one by the solvent.

CHEMISTRY

Formation of alcohols:

Optical isomers formed?

Yes if No No R'& R" differ

Acylation

CHEMISTRY

Type of reaction:

nucleophilic additionelimination reaction

Nucleophiles:

water, ammonia, alcohol,

amine
$$R \xrightarrow{\delta} C \xrightarrow{\delta} R \xrightarrow{C} CI$$

$$R \xrightarrow{O} H$$

$$R \xrightarrow{O} H \xrightarrow{C} CI$$

$$R \xrightarrow{O} H \xrightarrow{C} CI$$

$$R \xrightarrow{O} H \xrightarrow{C} CI$$

$$R \xrightarrow{O} H \xrightarrow{C} H$$

$$R \xrightarrow{O} H$$

$$R$$

$$CH_3CH_2$$
 CH_3CH_2
 CH_3CH_2

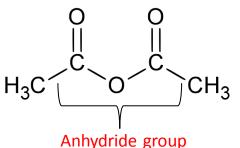
2 Acylation

CHEMISTRY

$$\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3\text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3$$

Naming acyl chlorides:

Alkanoyl chloride. E.g. ethanoyl chloride is CH₃COCl; propanoyl chloride is CH₃CH₂COCl


Acid Anhydrides

CHEMISTRY

General formula: RCOOCOR'

Examples:

Ethanoic anhydride

Reactions:

Anhydrides react in the same way as acyl chlorides.

Acid Anhydrides

CHEMISTRY

Reasons for using acyl chlorides and acid anhydrides:

Reactions are faster, produce a better yield and occur at lower temperatures.

Reasons for acid anhydrides instead of acyl chlorides:

Acid anhydrides are cheaper, less corrosive, less reactive with water and produce a safer by-product (which is ethanoic acid rather than hydrogen chloride). The reaction is also slower than with acyl chlorides and therefore easier to control on a large scale in industry.

An important synthesis reaction using ethanoic anhydride:

Amines

2

CHEMISTRY

General formula:

Primary amine: RNH₂ Secondary amine: RR'NH Tertiary amine: RR'R"N

Examples:

Ethylamine CH₃CH₂NH₂
Ethylmethylamine
CH₃CH₂(CH₃)NH
Trimethylamine
(CH₃)₃N

Type of reaction:

Acid-base reaction (methylammonium salt formed)

(Methylammonium ethanoate)

Amines

2

CHEMISTRY

Forming amines:

Nucleophilic substitution

Note:

Excess ammonia + haloalkane ->
mainly primary amine + ammonium
salt

If ammonia is not used in excess, further substitution reactions will take place and a mixture of 1°, 2°, 3° and quarternary amines will be formed. The amines need to be separated by fractional distillation.

Forming Io amines:

Reduction of nitriles