

Question

State the meaning of the term structural isomers.

2 marks

Answer

Compounds with the same molecular formula but different structural formula.

Introduction to Organic

l mark

Answer

 C_4H_{10} as it has stronger van der Waals' forces as it has a longer chain.

Question

Give the IUPAC name of the position isomer of but-l-ene. I mark

Answer

But-2-ene (the functional group is in a different position on the carbon skeleton)

Explain why the complete combustion of butane might contribute to environmental problems.

I mark

Answer

H₂O and CO_2 are produced which are both greenhouse gases (and contribute global to warming).

Question

Give the IUPAC name of the chain isomer of butl-ene.

I mark

Answer

(2)-methyl-prop-(1)-ene (the carbon skeleton is changed; you are usually looking for branched isomers)

CHEMISTRY **Introduction to Organic**

Question

Identify a compound that is used to react with SO_2 and give a reason for using this compound.

2 marks

Answer

oxide/calcium Calcium carbonate. Both are bases and neutralise the SO_2 .

Introduction to Organic

Explain why the boiling 2.2point of dimethylpropane is lower than that of pentane.

2 marks

There are weaker van der Waals forces in 2,2dimethylpropane as there is less surface contact between the molecules.

Introduction to Organic

Question CHCl₃ State what is meant by the term molecular formula.

l mark

Answer

The molecular formula is the actual number of atoms of each element in a molecule.

State the type of cracking that produces a high % of ethene and propene. Give the 2 conditions needed.

Answer

Thermal cracking. High temperature and high pressure. (condition mark depends on correct type of cracking).

Answer

Fractional distillation molecules (separating based on differences in their boiling points due to differences in chain length).

I mark

CHEMISTRY **Introduction to Organic** Give the type of reactive intermediate formed during catalytic cracking. l mark Carbocation CHEMISTRY **Introduction to Organic** Give one reason why the oxide NO is a pollutant l mark is toxic./forms the acidic gas NO₂/triggers asthma attacks/causes photochemical smog/forms acid rain/is a

Question

Identify a catalyst used in catalytic cracking.

🕨 I mark

Answer

Zeolite/Aluminium oxide

Introduction to Organic

Question

Identify a catalyst used in the catalytic converter.

I mark

Answer

Platinum or Palladium or Rhodium

Give the type of reactive intermediate formed during thermal cracking and state how it is formed.

Answer

Free radical. Homolytic fission of a C-C or C-H bond.

Introduction to Organic

Explain what is meant by the term fraction (in fractional distillation).

I mark

Answer

Molecules with similar boiling points/similar carbon chain length

What type of isomerism do chain and position isomers belong to?

Answer

Structural isomerism.

Introduction to Organic

Question

Describe the temperature gradient in the fractionating column.

l mark

Answer

It is hotter at the base/ is colder at the top (must be a comparative statement).

Explain how NO is produced in the engine of the motor vehicle.

2 marks

Answer

Nitrogen and oxygen react at high temperature (created by the spark).

Introduction to Organic

Question

Suggest how you could demonstrate that a boiler is faulty and combustion is incomplete.

Answer

Detect CO in the exhaust gases.

Give the name of a solid pollutant which forms when pentane burns incompletely.

I mark

Carbon/Soot

Question

What is a fuel?

I mark

Answer

A substance that releases heat energy when burned.

Question

Give the two main types of product formed during catalytic cracking.

2 marks

Answer

Aromatic hydrocarbons, branched alkanes, cycloalkanes.

A S CHEMISTRY

Introduction to Organic

Answer

The fuel solidifies/freezes/goes viscous at polar temperatures.

Introduction to Organic

What effect does increasing the intensity of UV light on the rate of reaction between CH_4 and Cl_2 . Why?

Answer

The rate increases as there are more CI radicals produced.

Question

State the strongest intermolecular force in alcohols.

Answer

Hydrogen bonding.

Introduction to Organic

Suggest one reason, other than cost, why a catalyst is coated on a ceramic honeycomb.

l mark

Answer

The surface area is increased which increases the rate of reaction and removes more pollutant gases.

Explain why propane (boiling point -42°C) is supplied as a liquid for use in camping stoves.

l mark

Answer

As a liquid it occupies a much smaller volume than as a gas.

Atomic Structure

Question

Explain why the first ionisation energy of every element is endothermic.

🕨 l mark

Answer

Energy is required to overcome the attraction between the negative electron and the positive protons.

Atomic Structure

Question

Suggest why the first ionisation energy decreases down a group.

I mark

The atoms become bigger due to the addition of an extra shell. Shielding and distance between the nucleus and the outer shell increase so attraction decreases.

Atomic Structure

Explain why isotopes of the same element react in the same way.

l mark

Answer

The isotopes have the same electron configuration.

Atomic Structure

Explain how gaseous atoms are ionised in a mass spectrometer.

2 marks

Answer

An electron gun knocks out electrons.

A S C Atomic St	HEMISTRY ructure
Question "ass number - i stomic - jumber - 3	Define mass number of an isotope.
Answer	Total number of protons and neutrons.
A S C Atomic Str	HEMISTRY
Question	Explain how the abundance of an isotope is determined by a mass spectrometer.
Answer	A current is produced at the detector. The size of the current is proportional to

abundance.

Atomic Structure

State why more than the minimum energy is not used to ionise samples inside the mass spectrometer. l mark

Answer

То prevent further ionisation/to knock out only one electron.

Atomic Structure

Question

Answer

The number of protons inside the nucleus.

l mark

Atomic Structure

Give two reasons why samples must be ionised inside the mass spectrometer.

2 marks

Answer

To accelerate, to deflect and to detect the sample ions.

Atomic Structure

Question

Define isotope.

I mark

Answer

Atoms with the same number of protons and different number of neutrons.

Question

State one change in the operation of the mass spectrometer that will change the path of an ion. 2 marks

Answer

The electromagnetic field is increased in strength to deflect ions with a high m/z ratio.

Question

State the relative mass and charge of electrons, protons and neutrons.

3 marks

Answer

Relative charges: electron I-; proton I+, neutron 0 Relative masses: electron $1/1800 \rightarrow 0/$ neglible; proton I; neutron I

but the shielding remains

the same.

ions in the lattice.

A S CHEMISTRY Bonding		
Question CI H	Define electronegativity.	
Answer Polar Covalent Bond	The power of an aton to attract an electron pair in a covalent bond.	
A S C Bonding	HEMISTRY	
Question	Explain why the bondin in nitrogen oxide covalent and not ionic.	
Answer Non-Polar Covalent Bond	The electronegativit difference between N and O is very small.	

Bonding

Question

Explain why metals have a high melting point.

2 marks

There is a strong attraction between the positive metal ions and the delocalised electrons in the giant metallic lattice.

Bonding

Question

Explain why iodine has a higher melting point than fluorine.

2 marks

Answer

lodine atoms are larger than fluorine atoms so have more electrons and therefore stronger van der Waals forces between the molecules.

Bonding

Question

Explain why metals can be hammered into different shapes.

l mark

Answer

Because the layers can slide past each other.

Solitaing

Question

Explain why ice is less dense than water.

I mark

Answer

Water molecules in ice are held further apart than in liquid water.

A S	HEMISTRY
Bonding	
Question	
*****	Explain why the boiling point of fluorine is low.
	2 marks
Answer	There are only weak van
	der Waals forces between the fluorine molecules.
A S C	HEMISTRY
Bonding	
Question	Explain why the melting point of silicon is high.
	3 marks
Answer	Silicon forms a giant covalent lattice. Many strong covalent bonds have to be broken for which a large amount of
	energy is required.

Bonding

Explain the melting point of sodium iodide is lower than that of sodium bromide.

I mark

The iodide ion is larger than the bromide ion; there is less attraction between the iodide and sodium ion as a result.

Bonding

Question

Explain why the melting point of sulfur is higher than that of phosphorus.

2 marks

Answer

 S_8 is larger than P_4 , so there are more van der Waals forces to be overcome in S_8 .

Bonding

Answer

Shared pair of electrons.

l mark

2nd

of

I mark

CHEMISTRY **Bonding**

Explain

ionisation

Question Ne_(q) → Ne⁺_(q)+ e⁻ Ne⁺_(a) → Ne²⁺_(a)+ e⁻

Answer

In sodium, the second electron is lost from a 2p orbital, in magnesium it is lost from a 3s orbital. The 2p orbital is closer to the nucleus so the electron is less shielded.

why

sodium is greater than

that of magnesium.

the

energy

Bonding

Question

Explain why the melting point of Al is higher than that of Na.

2 marks

Answer

Al³⁺ has a bigger charge than Na^+ & the Al^{3+} is a smaller ion than Na⁺; there are more delocalised electrons in Al so the metallic bond is stronger in Al.

A S	CHEMISTRY
Bonding	
Question	State the type of structure shown by crystals of sulfur and phosphorus.
Answer	Simple molecular.

	A S CHEMISTRY Bonding
type d F ₂ , d HF. marks	Question Explain how hydrogen bonding between HF molecules arises. 3marks
es pole 3.	AnswerLarge difference in electronegativity between H and F results in a permanent dipole $^{\delta+}H-F^{\delta-}$ and an attraction between a lone pair of electrons on F and $^{\delta+}H.$
	A S CHEMISTRY Bonding
llar. ^{mark}	Question Define polarised (as in polarised bond). 2 marks
with	$ \begin{array}{c} \textbf{Answer} \\ \delta^+ & \delta^- \\ \textbf{C} & \textbf{F} \end{array} \begin{array}{c} \text{Electron cloud/electron} \\ \text{distribution is} \\ \text{distorted/unequally} \\ \text{distributed.} \end{array} $

3marks

dipole-dipole

l mark

A S Bonding	CHEMISTRY
Question	Describe the bonding in a crystal of iodine.
Answer	Covalent between iodine atoms; van der Waals forces between iodine molecules.
A S Bonding	CHEMISTRY
Question	Explain why heat is required to melt and iodine crystal.
Answer	The van der Waals forces must be overcome.

Atomic Structure

Question

State the meaning of the first ionisation term energy of an atom.

2 marks

Answer

Energy change required when an electron is removed from a gaseous atom to form a 1 + ion.

Atomic Structure

State and explain the general trend in first ionisation energies going from Na to Ar.

3 marks

ionisation energies st increase from Na to Ar as the nuclear charge but the increases shielding remains the same.

Atomic Structure

Give 2 reasons why the Ist ionisation energy of Ne is lower than the 3rd ionisation energy of Mg.

Answer

3p

A Mg²⁺ ion is smaller than an Ne atom. Mg²⁺ has more protons than Ne/ it is harder to remove an electron from a positively charged ion.

repulsion between the electrons in this electron pair results in a lower first ionisation energy.

Bonding

Explain why the melting point of magnesium is higher than that of sodium.

3 marks

Mg atoms have a greater nuclear charge, are smaller and have more delocalised electrons so there is a stronger electrostatic attraction between the ions and delocalised electrons.

Bonding

Question

Explain how Na₂S is formed from its atoms. Make reference to electrons in your answer.

2 marks

Answer

I electron from each Na atom is transferred to the S atom.

Bonding

Explain how metals conduct electricity.

2 marks

Delocalised electrons move in a given direction when a pd is applied.

Question

Define relative atomic mass.

2 marks

Answer

Average mass of an atom / isotope (compared to C-12) on a scale in which an atom of C-12 has a mass of 12

Periodicity

Answer

Carbon; it has the smallest number of protons and similar shielding which results in the outer electrons to be least attracted to the positive nuclear charge.

Periodicity

Question

Explain why the van der Waals forces in liquid argon are very weak.

2 marks

Argon is made of single atoms with electrons close to the nucleus. This means argon atoms cannot be easily polarised.

Periodicity

Explain why the second ionisation energy of carbon is greater than the first ionisation energy.

An electron has to be removed from a positive ion which requires more energy as the electrons are now closer to the nucleus.

QuestionExplain why the first
ionisation energy of Al is
lower than that of Mg.Image: state s

Less energy is needed to remove an electron from the 3p sub-level than the 3s sub-level as the 3p sub- level is further from the nucleus and more shielded.

2 marks

Answer

Patterns in the change in the properties of a row of elements are repeated in the next row.